
APICAD: Augmenting API Misuse Detection
through Specifications from Code and Documents

Xiaoke Wang, Lei Zhao∗
Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education,

School of Cyber Science and Engineering, Wuhan University, Wuhan, China
Email: xkernel@whu.edu.cn, leizhao@whu.edu.cn

Abstract—Using API should follow its specifications. Oth-
erwise, it can bring security impacts while the functionality
is damaged. To detect API misuse, we need to know what
its specifications are. In addition to being provided manually,
current tools usually mine the majority usage in the existing
codebase as specifications, or capture specifications from its
relevant texts in human language. However, the former depends
on the quality of the codebase itself, while the latter is limited
to the irregularity of the text. In this work, we observe that
the information carried by code and documents can complement
each other. To mitigate the demand for a high-quality codebase
and reduce the pressure to capture valid information from texts,
we present APICAD to detect API misuse bugs of C/C++ by
combining the specifications mined from code and documents. On
the one hand, we effectively build the contexts for API invocations
and mine specifications from them through a frequency-based
method. On the other hand, we acquire the specifications from
documents by using lightweight keyword-based and NLP-assisted
techniques. Finally, the combined specifications are generated
for bug detection. Experiments show that APICAD can handle
diverse API usage semantics to deal with different types of API
misuse bugs. With the help of APICAD, we report 153 new bugs
in Curl, Httpd, OpenSSL and Linux kernel, 145 of which have
been confirmed and 126 have applied our patches.

I. INTRODUCTION

Modern software relies on various libraries by invoking Ap-
plication Programming Interfaces (APIs). When using an API,
users should be aware of its usage specifications. Violation of
API specifications will not only affect software functionalities
but also introduce security threats [1], [2]. However, due to the
complexity and diversity of software development scenarios, it
is challenging for users to use APIs correctly in practice [3]–
[7]. As a result, API misuse bugs are widespread [3], [5] and
contribute to 17.05% of all bugs [8].

To help developers correctly use APIs and help testers find
and fix API misuse, many techniques for API misuse detection
have been proposed. In general, detecting API misuse bugs can
be seen as a process to check whether the API usage semantics
violate specifications. According to the sources of constructing
API specifications, existing techniques can be classified into
manual-based, code-based and text-based.

For manual-based techniques, they need to manually pro-
vide API specifications or write hard-coded rules for checkers
to detect defects in the target code [2], [9]–[12]. However,
writing precise API specifications or specific rules relies on

∗Lei Zhao is the corresponding author.

expert knowledge, and it is a time-consuming task even
for an experienced user, making manual-based techniques
impractical for regular users, and it is hardly scalable for the
growing number of projects and their APIs.

To automatically construct API specifications, code-based
techniques attempt to mine API specifications from code [13]–
[17]. As a typical work, APISAN [16] treats deviations from
the majority usage of an API as misuses since the lack of
knowledge about correct API usage in existing code. There-
fore, its effectiveness relies on the size and quality of the
codebase it is mining [8], [18]. In other words, a codebase
should contain enough API cases to reveal different types of
usages, and the majority usage of different types should be
correct. However, the above two conditions are not always
satisfied [8]. To mitigate the codebase problem, a recent work
ARBITRAR [18] leverages active learning to introduce user
feedback in the detection process, but its effectiveness could
still be influenced by the user’s knowledge of the API.

Moreover, we can also mine text-based sources of specifi-
cations, including online technical forums, code comments, or
standard documents. With the development of natural language
processing (NLP), inferring specifications of an API from its
related texts in human language seems to be a promising di-
rection [19]–[23]. However, human language is usually diverse
in writing style, and many descriptions are loosely formatted
or outdated [4], [7], [24]–[26]. What is worse, many functions
do not even exist in the standard documents. For example,
OpenSSL [27] lists thousands of functions in libcrypto which
are not documented [28]. In addition, it is also time-consuming
to make labeled data for training models. These factors bring
negative impacts to text-based techniques.

In summary, the automatic way is usually mining API spec-
ifications from code or texts. However, code-based techniques
regard the majority usage as specifications, which is restricted
by the codebase. By contrast, text-based techniques cannot
ensure the integrity of constructed specifications because the
diversity and loose-formatted texts limit them.

In this paper, we present APICAD, a static tool for detecting
API misuse bugs of C/C++ based on code and documents.
APICAD not only mitigates the demand on a large codebase
with majority valid usages of code-based techniques but also
reduces the pressure to mine information from texts of texts-
based techniques. In brief, given a codebase to be checked and
its documents, APICAD automatically executes two parallel

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00032 Link to the published paper: https://ieeexplore.ieee.org/document/10172771.

jobs. In the first job, APICAD uses under-constraint symbolic
execution [29], [30] to build the contexts of API invocations
from the codebase and then analyzes them to extract the
most-frequency usage as API specifications. In the other
one, APICAD first filters the usage directive sentences in
documents and then infers API specifications from documents
with the help of Part-of-Speech (PoS) tagging and dependency
parsing. After the above two jobs, we make a combination to
acquire proper API specifications via logical disjunction and
the union operation. At last, given the usage feature for each
trace of the target API in a codebase, APICAD judges whether
it is API misuse according to the combined API specifications
with several heuristical rules to produce the final bug reports.

The key insight behind our approach is that the specification
from documents can be a valid conviction as a supplement to
the specification from code, and vice versa. For example, an
API provided by glibc named mprotect() returns 0 if successful
or -1 if not, so there are at least two valid ways to check
for failure: != 0 or == -1. However, if one usage of them
(e.g., != 0) occurs most in a given codebase, code-based
techniques like APISAN will treat the minor but correct cases
(i.e., == -1) as bugs. In fact, we find that “The mprotect
function returns 0 on success and -1 on failure” is briefly
indicated in the documents of mprotect() [31]. If we leverage
it to supplement the specifications mined from code, we
can easily avoid the above potential false positives. On the
other hand, the description of some API specifications mined
from code can be absent in documents, while the information
carried by code is always available, which can supplement the
missing information in documents. Therefore, by combining
the specifications from both code and documents, we can
augment API misuse detection to be more practical.

To demonstrate the effectiveness of APICAD, we evaluate
it on APIMU4C [8], which is a benchmark for API misuse
detection, and four real-world programs (Curl [32], Httpd [33],
OpenSSL [27] and Linux kernel [34]). Experiment results
show that APICAD is efficient in building the context of
API invocations in C/C++ programs and analyzing documents
for detection. From the evaluation results on 2172 manually
crafted API misuse bugs in APIMU4C, APICAD outperforms
in detecting different types of API misuse bugs than the other
three static tools. On the real-world parts of APIMU4C,
the precision and recall of APICAD achieve 43.14% and
66%, respectively, increasing 30.37% and 48% compared with
APISAN. In addition, we reported 153 previously unknown
API misuse bugs for the chosen real-world programs, with
145 confirmed and 126 of them applied our patches.

Overall, our main contributions are as follows:
• We investigate the shortcomings of sources for automatically

constructing API specifications and present APICAD, a
tool for API misuse detection of C/C++ by combining the
specifications from code and documents.

• We propose approaches to effectively build the context
of API invocations and mine the common types of API
specifications from code and documents by frequency-based
mining and NLP-assisted techniques, respectively.

• We perform a comprehensive evaluation for APICAD. Re-
sults show that APICAD can capture and handle diverse API
usage semantics. With the help of APICAD, we report 153
new bugs, and 145 of them have been confirmed.
Our prototype implementation is available as an open-source

project at https://github.com/x2018/apicad public.

II. APPROACH

Figure 1 shows the overview of APICAD, which has four
modules to work. The encoded context building aims to infer
the usage semantics from the context of API invocations,
which can be used to mine specifications and serve as target
objects for detection. To save cost and ensure effectiveness,
APICAD first performs under-constrained symbolic execution
to selectively explore paths for generating feasible traces to
each API call site. Then the usage semantics of the traces are
extracted and dumped into feature vectors to represent encoded
contexts (Section II-A). Afterward, in the second module,
APICAD statistically mines three types of API specifications
based on the frequency of the corresponding features in the
encoded contexts of an API (Section II-B).

Meanwhile, different from the above two modules which
analyze code, the third module is in parallel with them for
analyzing documents. Given standard documents of an API,
APICAD will preprocess them and classify the sentences
to different usage types through the corresponding keyword-
based templates. Furthermore, the techniques in NLP, includ-
ing PoS tagging and dependency parsing, are leveraged to
capture the semantics carried by the classified sentences for
constructing the API specifications (Section II-C). Finally,
we combine the specification from code and documents by
logical disjunction and the union operation. Then given a
target API, APICAD retrieves the encoded contexts of it and
judges whether there are bugs among them with the combined
specification as well as several heuristical rules (Section II-D).

A. Encoded context building

Properly building encoded contexts with the usage seman-
tics feature is essential for the whole work. On the one hand,
the encoded context affects the quality of the specification
from code because its majority usages are mined as specifi-
cations in the subsequent processing. On the other hand, to
detect API misuse bugs, we need to acquire the usage from
the context of API invocations on different execution paths for
judgment. If the defect paths are not effectively covered, it is
impossible to detect the corresponding bugs.

The invocation context for a given target call site varies ac-
cording to incoming and outcoming paths. However, exploring
all possible paths to a call site is infeasible due to the path
explosion problem. In this work, we choose under-constrained
symbolic execution [29], [30] to trace the execution paths in
a limited scope to mitigate the cost.

1) Identify the analysis scope for API invocations: Before
starting to execute symbolically, the analysis scope should be
identified. Specifically, APICAD uses a static slicer to narrow
the analysis scope by backward searching the call graph from

https://github.com/x2018/apicad_public

2

3

Function Info

Inferring specification from code

Detection
Under-constrained

trace generation

symbolic traces

API usage semantics
extraction

LLVM Bitcode

Encoded contexts
database

Target API

Frequency-based
specification mining

Bug detection with combined specification

Specification

Combined
specification

4

Bug reports

Usage semantics for invocations
of the target API

3 Specification construction from documents
API Documents

NLP-assisted semantic
comprehension

Keywords-based
sentences classification

1 Encoded contexts
building

2

Specification

Detection
Under-constrained

trace generation

symbolic traces

API usage semantics
extraction

LLVM Bitcode

Encoded contexts
database

Target API

Frequency-based
specification mining

Bug detection with combined specification

Specification

Combined
specification

4

Bug reports

Usage semantics for invocations
of the target API

3 Specification construction from documents
API Documents

NLP-assisted semantic
comprehension

Keywords-based
sentences classification

1 Encoded context
building

2

Specification

Fig. 1. Overview of APICAD. There are two parallel jobs in the left part. ❶ and ❷ are for code analysis. These two modules are essential for ❹ since we
must have code to be detected. By contrast, ❸ is for document analysis and can be optional for detection as documents are not always available.

callers of the target call site. Each slice records a call chain
which is from an entry to a target call, and we take slice
depth to control the number of edges searched up. As shown
in Figure 2(a), given a target call site T which is called by #7
or #8, then slices [#7, T] and [#8, T] are generated when the
depth is zero. While if the depth is one, then the edges to #7
and #8 are further searched to create new slices.

Because not all calls on a path are related to the usage
of the target call, we further determine which calls in the
scope should be analyzed in addition to the basic scope.
Considering the usage of API is reflected in the propagation of
its arguments and return, we make slices record usage-related
calls whose arguments or return have relations with the target’s
to guide the exploration. To recognize usage-related calls, we
perform a conservative flow-insensitive points-to analysis for
the caller of the target call to lighten the analysis burden. In
the analysis, whether a variable is local or global, we see the
allocation of it as a memory location and track the propagation
of it by unwrapping the operand of instructions such as Load,
Store and GEP. After gathering all possible propagation of
the memory locations, the usage-related calls are filtered by
judging whether their arguments or return can be propagated
from the memory location that propagates to the target.

3

5 6

7

4

R

8

2

1

T9

Semantic-related

slices(depth=0): {[7, T], [8, T]}

Entry block of #8

T

E

a b

c d

f

R jg h

e

Block which contains
the target call site

Identify analysis scope on the Call Graph Execution within the scope [8, T](depth=0)

3

5 6

7

4

T

8

2

1

R9

Semantic-related
(a)

3

5 6

7

4

R

8

2

1

T9

Semantic-related

slices(depth=0): {[7, T], [8, T]}

Entry block of #8

T

E

a b

c d

f

R jg h

e

Block which contains
the target call site

Identify analysis scope on the Call Graph Execution within the scope [8, T](depth=0)

3

5 6

7

4

T

8

2

1

R9

Semantic-related

(b)

Fig. 2. API invocation context generation.

2) Build the context of API invocations: The primary set-
ting of under-constraint symbolic execution is inherited from
ARBITRAR [18] that uses a hash-based memory model, unrolls
each loop once, and does not repeatedly explore recursive
function. The format of a trace generated by it is shown in
Table I, which is a sequence of instructions on a program
path with symbolic or concrete values. However, since it only

executes the loop once and does not execute some internal
calls, many values can influence the path condition we cannot
calculate. To avoid missing possible paths, we replace the
result of the binary operation with a new symbol after entering
a loop because these binary operations can influence the
branches inside the loop. Besides, if a call we do not step
into takes memory addresses as arguments, we also replace
the value in the memory with a new symbol since it is unclear
how the call operates on the value.

TABLE I
THE FORMAT OF A SYMBOLIC TRACE.

Function f
Integer α

Symbolic variable β
Symbolic type τ ::= [arg | local | global | symbol]

Symbolic expression e ::= [α | βτ]
Boolean bool ::= [true | false]

Binary operation binop ::= [+ | − | × | ÷ | %]
Comparison condition cond ::= [= | ̸= | ≤ | < | ≥ | >]

i-th event ti on the trace ::= Call (i, eresult, f, eargs)
| Assume (i, cond, e1, e2, bool)
| Store (i, elocation, evalue)
| Load (i, eresult, elocation)
| GEP (i, eresult, elocation, eindices)
| Binary (i, eresult,binop, e1, e2)
| Alloca (i, e)
| Ret (i, e)

Target event tk ≡ Call (k, êresult, f̂, êargs)
Symbolic trace ρ ::= {t1, ..., tk, ..., tn}

Moreover, as shown in Figure 2(b), it is useless to explore
the edge a→c as the following blocks cannot reach the target
call site. Though we do not know which paths are reachable
when executing forward, we know that the entry block can be
reached no matter which path we take back from the target.
Therefore, to save unnecessary time consumption, APICAD
firstly takes a simple backward searching from the target based
on the CFG to collect reachable paths and further uses them
to guide the execution.

After establishing the guided paths, APICAD starts the
under-constraint symbolic execution with both of them and
their corresponding slices. Specifically, it executes from the
entry point with fresh symbols as arguments and explores by
following the guided block paths to the target call site, while
the exploration directions are not restricted anymore after the
target call site. During the path exploration, APICAD attempts
to step into a call if the slice records the call as usage-related,
such as R in Figure 2(b), and the call’s implementation is
available in the analyzed bitcode. Otherwise, APICAD directly

TABLE II
USAGE FEATURES EXTRACTED BY APICAD WITH THEIR DEFINITIONS AND DESCRIPTIONS

Type Feature Definition Description

Return

checked
∃ i > k : Assume(i, condi, e1, e2, booli) ∧ (êret = e1 ∨ êret = e2)∧

∀ j < i : tj /∈ {Store(j, êret,), Load(j, , êret)} Return value is checked before it is dereferenced.

chk cond ¬checked ⇒ None, checked ∧ booli ⇒ condi, checked ∧ ¬booli ⇒ ¬condi Check condition for checking return value.
cmp value ¬checked ⇒ None, checked ∧ êret = e2 ⇒ e1, checked ∧ êret = e1 ⇒ e2 Comparison value for checking return value.
used in call ∃ i > k : Call(i, , , eargs) ∧ êret ∈ eargs Return value is used as an argument of another call.
used in bin ∃ i > k : Binary(i, , , e1, e2) ∧ (êret = e1 ∨ êret = e2) Return value is used in a binary operation.
stored not local ∃ i > k : Store(i, eloc, êret) ∧ (eloc = βarg ∨ eloc = βglobal) Return value is stored to an address outside the caller.
returned ∃Ret(n, êret) Return value is finally returned.

derefed
∃ i > j, j > k : Store(i, êret,) ∨ Load(i, , êret)

∨ (GEP (j, ej , êret,) ∧ (Store(i, ej ,) ∨ Load(i, , ej)))
Return value is dereferenced to read/write.

indir returned
∃Ret(n, e parent) ∧ Store(, e child, êret) ∧ is child item(e parent, e child)
| is child item(e1, e2) ::=

∃GEP (, eresult, eloc,) : eresult = e2 ∧ (eloc = e1 ∨ is child item(e1, eloc))
Return value is stored into another address and returned.

Argument

is constantx êarg [x] = α Argument x is a constant.
post.returnedx ∃Ret(n, êarg [x]) Argument x is finally returned.
on stackx ∃Alloca(, e) : êarg [x] = e ∨ (∃ i < k : GEP (i, ei, eloc,) ∧ eloc = e ∧ ei = êarg [x]) Argument x is a memory address on stack.
pre.checkedx ∃ i < k : Assume(i, , e1, e2,) ∧ (êarg [x] = e1 ∨ êarg [x] = e2) Argument x is checked before the call site.

post.checkedx
∃ i > k : Assume(i, , e1, e2,) ∧ (êarg [x] = e1 ∨ êarg [x] = e2)∧

∀ j < i : tj /∈ {Store(j, êarg [x],), Load(j, , êarg [x])} Argument x is checked after the call site.

Causality pre.calls
fpre | ∀ f ∈ fpre,∃ i < k :

Call(i, ei, f, eargs) ∧ (f ∈ usage-related-calls ∨ (ei ∪ eargs) ∩ êargs ̸= ∅)
Causal calls which occur before the target call site.

post.calls
fpost | ∀ f ∈ fpost, ∃ i > k :

Call(i, ei, f, eargs) ∧ (f ∈ usage-related-calls ∨ (êret ∪ êargs) ∩ eargs ̸= ∅)
Causal calls which occur after the target call site.

replaces the call’s return value with a fresh symbol. Besides,
the target call itself is also ignored to handle since we are not
interested in knowing API internals. When reaching the return
point of the analysis scope, a symbolic trace is generated if
the path constraints are satisfiable.

3) Extracting usage semantics: According to the previous
analysis for API misuse bugs [8], [16], [18], APICAD encodes
each trace ρ of an API into a feature vector encoded(ρ) with
three types to represent various usage semantics. In general,
these features are extracted by evaluating the return value and
arguments of the target call on the events on a trace. Table II
shows the definitions and descriptions of these features, and a
brief explanation for them is as follows:

(a) Return value. The return value in C/C++ is usually used
as an execution status code or a pointer to memory. Checking
the return value is important to avoid security defects such as
NULL dereference. Therefore, we are concerned about how
the return of a call is checked in addition to the suspicious
operations on the return value. Note that we argue that the
return checking should be carried out before it is dereferenced
so that we make checked valid only when it is performed
before Load and Store.

(b) Argument. Before calling an API, we may need to verify
whether the argument is sensible, such as that some pointer-
type arguments cannot be NULL. Therefore, we record how
arguments are checked before the call. Besides, since some
functions may use arguments as execution status, we are also
concerned about whether they are checked after the call.

(c) Causality. There can be a causal relationship between
different APIs. For instance, an allocated memory should be
freed. To excavate the potential causal relationships, we still
use the arguments and returns as the metric and also leverage
the usage-related calls recorded by the corresponding slice to
filter them from the trace.

In fact, several features are also defined by ARBITRAR via
Datalog rules. The main differences between us are: (a) We
remove many definitions, including the features used to rep-
resent control flows and for each separate causal call, because
they are weakly related to usage. (b) We use chk cond and
cmp value to handle complex assumptions rather that just
being sensitive to assumed zero. (c) We optimize definitions
such as derefed and checked to make them more precise. The
change for checked is explained in the above description. As
for derefed, ARBITRAR evaluates Load, Store and GEP to
infer it, while we do not directly see GEP (, , elocation,)
as a dereference to elocation since GEP just calculates the
memory address rather accessing the memory.

B. Frequency-based specification mining

To automatically mine specifications from code, we still
follow the assumption that the majority usage is correct.
Though the quality of the codebase limits this assumption,
it is indeed a simple and effective practice without additional
knowledge about specific APIs [16].

TABLE III
MINING SPECIFICATIONS FROM CODE. ROWS 1-5 ARE AUXILIARY FOR

SHOWING THE PROCESS. ROWS 6-11 INDICATE MINED SPECIFICATIONS.

API k′s contexts ::= {encoded(ρ1), ..., encoded(ρn)}
num(feature, val) ::=

∑n
i=1(encoded(ρi).feature = val ∨ val ∈ encoded(ρi).feature)

pre hint(call) ::= ∃hint str ∈ [′alloc′,′ open′, ...] : hint str in call′s name

post hint(call) ::= ∃hint str ∈ [′free′,′ close′, ...] : hint str in call′s name

hints(post) ::= post hint(post) ⇒ {pre hint(k) ⇒ 0.3, else 0.1}, else 0

ret.need check ::= num(ret.checked, true)/n > λ

ret.chkvals ::= v | ∀val ∈ v : num(ret.cmp value, val)/n > λ

arg.pre.need checkx ::= num(arg.pre.checkedx, true)/n > λ

arg.post.need checkx ::= num(arg.post.checkedx, true)/n > λ

causal.pre calls ::= fpre | ∀f ∈ fpre: num(casual.pre.calls, f)/n > λ

causal.post calls ::= fpost | ∀f ∈ fpost: num(casual.post.calls, f)/n+ hints(f) > λ

In general, there are six mined specifications, as demon-
strated in Table III, which are also carried out by three types.

Specifically, we first cluster some sub-features based on all the
encoded contexts of an API k. Then the frequency of a specific
feature value is calculated by the number of its occurrences
divided by the total number of traces. The feature value will
be regarded as a valid specification if the frequency is higher
than a threshold λ. Note that not all features are clustered to
generate a specification. Some features, including derefed and
returned, are only leveraged to provide contextual evidence
for detection. Especially for the post-causal functions, we
further evaluate them according to their checking conditions.
If a causal call mostly occurs under a specific assumed value
(obtained through chk cond with cmp value), we assume
that it only needs to be called under this value. This setting
takes into account a fact that an API does not need post
causal calls if it fails (return a specific value). Besides, inspired
by APISAN [16], APICAD takes considerations on some
deterministic hints for causal relationships. For example, if
a sub-string free or clear is contained in the name of a
post-causal function, which means that it is a likely memory
release API, so APICAD prefers to include it in the causal
specification by increasing its frequency score.

sigmoid(x) =
1

1 + e−x
, x =

n− θ

θ/5
(1)

λ = 0.5 + 0.3 ∗ sigmoid(x) (2)

For the threshold λ, we argue that it should be tolerant for
the small samples and strict with the complex samples of an
API. Based on our observation, the small samples of an API
are more challenging to form centralized clusters statistically.
Besides, it will not bring a lot of false reports even if we mine
a wrong specification. By contrast, the complex samples are
enough to reveal valid specifications. A higher threshold can
avoid invalid specifications mined from some invocation side
effects. Therefore, APICAD uses a modified sigmoid function
as λ. As shown in Equation 2, the variable n denotes the
number of traces for the API, and θ is a hyperparameter to
control how large a range we adjust. The growth of threshold
in the range of n = [0, 2 ∗ θ] is the same as the shape of
sigmoid function (Equation 1) in the range of x = [−5, 5].
We set the upper limit to 0.8, which is the default threshold
of APISAN. Then when n is zero, λ is around 0.5, while when
n is larger than 2 ∗ θ, λ is approaching 0.8.

C. Specification construction from documents

In this section, we describe how APICAD constructs speci-
fications from API documents. The main idea of the approach
is the observation that API documents have the basic structure
and grammatical characteristics corresponding to different
usage types. To construct specifications automatically, sensi-
tive keywords and NLP-assisted techniques can handle such
structure and grammatical characteristics, respectively.

The first step is to preprocess the documents. Particularly,
we collect the standard documents from websites and split
the information of each API existing in them, removing
usual stopped words and expanding abbreviations, etc. The

information of each API is thereby dumped into several parts
according to the original tag, including NAME, SYNOPSIS,
DESCRIPTION, and RETURN VALUE. The SYNOPSIS is
in the form of pseudo code to define the method so that
APICAD analyzes it to extract the types/names of the API and
its parameters. Then the descriptions of the method/parameters
are divided respectively by their names.

In the second step, the usage directive sentences in respec-
tive descriptions of the method itself or each of its parameters
are further filtered. This process leverages several sensitive
keyword patterns to identify the sentences into corresponding
categories. Though some sentences with complex patterns
may be ignored, we can at least ensure that the obtained
information is as precise as possible under this lightweight
analysis. In addition, it does not require considerable prior
knowledge, such as sufficient labeled samples, to train a model
for classification so that it is more practical to implement. In
brief, like the types of specifications mined from code, we still
focus on the usage of return checking, parameters checking
and causality: (a) To identify the sentences related to the return
checking, we take all the sentences in RETURN VALUE, and
use “return” to filter the sentences in DESCRIPTION. (b) The
parameter pre-checking directive sentences are retrieved by
the keyword templates, including “must [not] be”, “should
[not] be”, because we find that common descriptions about
parameter pre-checking satisfy the pattern, such as “must not
be NULL” or “should be larger than 0”. As for the parameter
post-checking, we are concerned about the words about status
such as “success”, “fail”, and “error” to filter the sentences
like “A pointer to the result in case of success or NULL on
error is stored in para foo”. (c) A sentence is recognized as
causality related if it contains the other method names except
for the analyzed method itself and it has sensitive words such
as “allocate”, “release”, and “free”.

With the usage directive sentences, we are in a position to
construct usage specifications with the help of PoS tagging and
dependency parsing. According to the PoS tag and dependency
relationships of each word in a sentence, APICAD firstly
identifies its subject, the actions of the subject and the objects
of the subject, and captures their various modifiers. Then
APICAD infers the semantics according to the directive type
of a sentence: (a) For the return checking, the objects are
extracted to be the possible values that can be returned, and the
modifiers of the objects are processed to obtain the conditions
for returning the respective value. If it is a negative sentence,
then the condition will also be reversed by APICAD. (b) The
parameter pre-checking is considered required if the parameter
is the nominal subject of a value. Processing the parameter
post-checking is similar to the processing of return checking,
but we only care whether the parameter needs to be checked,
which is determined by judging whether the parameter is
used to carry the return status. (c) For the causality, if it is
a passive sentence such as “must be released by foo”, the
oblique nominal (foo) of the passive action (released) will be
recognized as a causal function of the API. Otherwise, we
attempt to take the objects as possible causal functions and

identify the causal relationship through adverbial clause mod-
ifiers. Besides, we also attempt to find the explicit order words,
including “before” and “after” for correcting the judgment of
pre- or post-conditions.

BIO_new_ex() and BIO_new() return a newly created BIO or NULL if the call fails.

.
PUNCT

returnsIt 0 on and -1 on
NOUN VERB NUM NUM ADPADP CCONJ

success
NOUN

failure
NOUN

nsubj obj case cc case
nmod

conj

"ret": {"value": [0, -1], "cond": ["success", "fail"]}

nmod

It: TYPE_set_ex_data SSL_set_ex_data

Fig. 3. A directive sentence about “return” of mprotect().

For instance, Figure 3 illustrates a sentence with the PoS
tagging and dependency parsing result. This sentence is iden-
tified as a directive sentence about “return” since it contains
the keyword “return”. In this sentence, the nominal subject
(nsubj) is “It”, which refers to mprotect(). The action in the
sentence is “returns” with the “VERB” tag, and its objects are
“0” and “-1” (“-1” is the conjunction of “0”). Thus, we mark
the potential return values as “0” and “-1”. Then “success”
and “failure” can be further captured through nominal modifier
(nmod) as the conditions underlying “0” and “-1”, respectively.
The functionality of these conditions is similar to the assumed
value in the causality specification from code. If we can know
what a return value is for failure, then the post causal functions
will not be considered when the return value is assumed as
the failure. Note that the conditions can also be captured from
the other dependency relationships, such as adverbial clause
modifiers and oblique nominal, and we unify the conditions
as “success” and “fail” according to their keywords, such as
success, successful, and error, failure. Besides, we also rewrite
many common NOUNs to NUM, such as NULL→0.

After the previous steps, three types of API specifications
are constructed: (a) For the return value, the specification is
in the form of {“value” : [], “cond” : []} and the index
of the cond is corresponding to the same index of value.
(b) For the arguments, the specification is in the form of
{“pre.check” : bool, “post.check” : bool}. (c) As for the
causality, the specification is {“pre” : [], “post” : []}.

D. Bug detection with combined specification

As we demonstrated before, we define the same three types
for the specifications from code and documents. We cannot
ensure the specifications from the code or documents are
sound or complete due to the natural limitations of the related
techniques, so we choose the logical disjunction to combine
the specifications of boolean type and use the union operation
to combine the set type to give full play to the analysis fruits
of both code and documents. For specifications of boolean
type, logic disjunction will not let go of the defects we could
have caught. For set type, the union operation makes the
results obtained from the analysis of both code and documents
preserved. For example, if code.ret.need check = false but
doc.ret.value ̸= ∅, then we think the return value of the API is
needed to be checked, while the feasible values to be checked
should be code.ret.chkvals ∪ doc.ret.value.

With the combined specification, APICAD retrieves every
encoded context extracted from all the traces of a given API
for detection. The primary detection logic is judging whether
a specific feature violates the corresponding specifications.
Specifically, for the return checking, APICAD first judges
whether the check is needed. If so and it is checked, APICAD
then further judges whether the check value is reasonable.
Judging the argument checking is straight since there is just
one boolean specification. Note that we focus on the argument
that can be a memory address (is constant = false) for
argument post-checking. Otherwise, the returned argument is
unnecessary to be checked since the call cannot manipulate
it at all. As for the causality, APICAD checks whether the
functions in the specification exist in the current context.
In particular, a post-causal violation will be ignored if the
assumed return value of the encoded context is not recorded
in the post-causality specification from code or is known as a
failure value by the specification from documents.

Except for the features for comparing with the specifica-
tions, APICAD leverages the other features to expose the
defects that can be revealed in a single context as well as to
suppress false positives via the following rules: (a) The feature
is alloca is to alert obvious cases with common knowledge.
For instance, if the API name contains free and is alloca is
true, APICAD will report it as it may wrongly deallocate an
address on the stack. (b) If there are causal calls with the
same of the target’s name, we also check whether the name
contains the common memory release string such as “free”. If
so, we will report it as a potential double-free defect. Besides,
for the calls with one argument, we detect the lack of return
checking if it does not have post-causal calls with the same
target’s name to avoid redundant judgments. (c) Due to the
“short-circuiting” in C/C++, a return without checking may
not be a real bug. However, we cannot perceive it based on
one trace. Therefore, we tolerate the return without checking
if there is a natural trace for the same call site. Besides, we do
not know whether the API is successful or not if it is really
under “short-circuiting”, so we leverage the features including
derefed, used in bin, and used in call to reveal the status
of the return value. If the return is not used at all, we suppose
this call is in failure and ignore checking its subsequent casual
functions. (d) Moreover, if the argument/return is returned
or stored globally, we prevent reporting the bug since this
means that APICAD lacks the context out of the current scope.
Similarly, if an argument is returned, the post-checking bug of
the argument is also prevented from reporting.

At last, APICAD outputs the location of all reported bugs
with violation information and corresponding features. We
believe these outputs are helpful for users to understand the
original code and distinguish between real and false reports.

III. EVALUATION

We implement a prototype of APICAD in about 4K Lines
of Code (LoC). The encoded context building module is
implemented using Rust with about 1.5K LoC, and it is
developed based on the symbolic execution engine provided

by ARBITRAR [18]. Moreover, we use python to enable the
other three modules. The PoS tagging and dependency parsing
are performed with the pre-trained model of HanLP [35].

To evaluate APICAD, we conduct comprehensive experi-
ments for our prototype with the following four objectives.
• Functionality. Can APICAD capture and handle different

API usage semantics for detection?
• Effectiveness. How effective is APICAD in finding API

misuse bugs on real-world programs?
• Impact. Can APICAD find previously unknown API misuse

bugs in real-world programs?
• Performance. How about the performance of code and

document analysis implemented by APICAD?
Apart from the above objectives, we also discuss the advan-

tages of APICAD in the form of several case studies at the
end of this section. All the experiments are running on Ubuntu
20.04 LTS with Clang 12.0.0 installed, and the machine has
an 8-core CPU (Intel i7-11700, 2.50GHz) and 48 GB RAM.
Since the usage of most APIs exists in the caller function [16],
we set the slice depth to be zero by default, which is the same
as ARBITRAR. Moreover, considering there are usually 500-
800 traces for a fairly used API, we take θ = 500 as a default
evaluation setting to adjust the threshold λ.

A. Dataset

1) Bug-benchmark: We use APIMU4C [8] as our evalua-
tion benchmark, which is an open API misuse bug benchmark.
This benchmark has two parts: (a) Single-File-Case. This part
contains 2172 manually crafted API misuse bugs modified
from Juliet Test Suite [36] and Toyota ITC [37]. It covers
three common API misuse types: IPU (improper parameter
using), IEH (improper error handling), and ICC (improper
causal function calling). Therefore, we choose this part to
evaluate the basic functionality of APICAD. (b) Project-Case.
It contains 100 bugs from the old version of OpenSSL, Curl
and Httpd. Since this part provides a ground truth in its range,
we take the results on this part to estimate the precision and
recall of APICAD on real-world programs.

2) Real-world programs: We choose 4 well-known open
source projects including Curl (master c40914db) [32], Httpd
2.4.51 [33], OpenSSL (master 0299094c) [27] and Linux
kernel 5.15 [34]. Their release dates are all around November
2021. We use them to evaluate the efficiency of code analysis
and the impact on finding new real-world bugs.

3) Standard documents: We obtain the standard documents
of GNU libc, Linux kernel, and OpenSSL from websites
because the APIs described in these documents are widely
used in the chosen real-world programs. Specifically, Curl and
Httpd can all be compiled with OpenSSL enabled.

B. Functionality

The Single-File-Case benchmark contains 510, 612, and
1050 bugs of IPU, IEH, and ICC, respectively, which corre-
spond to the three types of our defined specification. It covers
different types of API misuse, but all its bugs are only specific
to several sensitive APIs. To be unbiased, we do not feed any

particular document when evaluating this part. As a result, this
part actually shows the ability of APICAD to detect manually
crafted bugs based on the specification from code alone, but it
is enough to reflect that APICAD supports handling different
usage semantics for detecting API misuse bugs.

Table IV lists the results with precision and recall as metrics,
and the data of the other three static tools are directly borrowed
from the original results of APIMU4C. In general, APICAD
finds more bugs on each of the three types than other tools
and performs best in terms of overall precision and recall,
which shows that APICAD is good at extracting different
types of usage semantics for detection. APISAN [16] performs
not well and even fails to detect all bugs of IPH, because it
cannot support many implicit semantics [8], [18]. By contrast,
CPPCHECK [11] and CLANG-SA [12] are more powerful in
code analysis and report bugs conservatively, so they result in
a relatively high precision. However, in addition to semantic
analysis ability, they can also be limited by their individual
rules/checkers written to encode API specifications [8].

Case study
CWE690_NULL_Deref_From_Return 其他三个都没有检测出来的案例 且
duplicate 指向同一个原因

CWE690_NULL_Deref_From_Return__char_malloc_15.c

CWE690_NULL_Deref_From_Return__char_malloc_15/CWE690_NULL_Deref_From_
Return__char_malloc_15.c:64
okCWE690_NULL_Deref_From_Return__char_malloc_15/CWE690_NULL_Deref_Fro
m_Return__char_malloc_15.c:69 ok-dup

61 char * data;
62 data = NULL; /* Initialize data */
63 /* POTENTIAL FLAW: Allocate memory without checking */
64 data = (char *)malloc(20*sizeof(char));
65 switch(6)
66 {
67 case 6:
68 /* FLAW: Initialize memory buffer without checking */
69 strcpy(data, "Initialize");

Fig. 4. A code snippet for explaining duplicate TP.

Note that there are 119 TPs reported as duplicates. Typically,
a duplicate TP means the report is right, but the root cause
of it is the same as another TP in a different location. For
example, as shown in Figure 4, there are two potential flaw
locations reported by APICAD, both caused by that data is
not checked, so we regard one of them as a duplicate. We
reserve these duplicate TPs because they can give users a more
comprehensive perspective on a buggy code to find the root
cause better. To ensure fairness, we only include the 119 TPs
in the precision calculation, not recall.

C. Effectiveness

The Project-Case benchmark provides a ground truth in its
range for real-world programs. Because many bugs are con-
firmed in later versions, we excluded them from the statistic to
stay within the scope of this benchmark. Besides, to reflect the
role of adjusting thresholds, there are two additional control
groups with different conditions: (a) The threshold λ is set to
0.5. (b) The threshold λ is set to 0.8. Meanwhile, we list the
results of disabling document analysis in parentheses to show
the role of the specifications from documents.

As shown in Table V, APICAD with default setting per-
forms better than APISAN in terms of precision and recall,
and we explain why APICAD is better in Section III-D. After
disabling document analysis, APICAD can no longer detect 19
bugs, and the precision of APICAD also decreases by 6.71%,
which indicates that the combined specification is beneficial to

TABLE IV
EVALUATION RESULTS ON THE SINGLE-FILE-CASE BENCHMARK OF APIMU4C.

Type Num APISAN CPPCHECK (ver 1.83) CLANG-SA (ver 6.0.0) APICAD

Report TP Precision Recall Report TP Precision Recall Report TP Precision Recall Report TP Precision Recall

IPU 510 0 0 0 0 145 127 87.59% 24.90% 127 105 82.68% 20.59% 272 272 100.00% 52.94%
IEH 612 446 173 38.79% 28.27% 298 270 90.60% 44.12% 0 0 0 0 448 448 100.00% 73.20%
ICC 1050 447 435 97.32% 41.43% 373 337 90.35% 32.10% 746 565 75.74% 53.81% 829 757 91.32% 60.95%

Total 2172 893 608 68.09% 27.99% 816 734 89.95% 33.79% 873 670 76.75% 30.85% 1549 1477↑ 95.35%↑ 62.52%↑

TABLE V
EVALUATION RESULTS ON THE PROJECT-CASE BENCHMARK OF APIMU4C. THE RESULTS WITHOUT FEEDING DOCUMENTS ARE IN PARENTHESES.

Target Num APISAN APICAD (λ = 0.5) APICAD APICAD (λ = 0.8)

Report TP Precision Recall Report TP Precision Recall Report TP Precision Recall Report TP Precision Recall

OpenSSL 50 108 13 12.04% 26% 167 (179) 48 (47) 28.74% (26.26%) 96% (94%) 117 (98) 44 (31) 37.61% (31.63%) 88% (62%) 93 (56) 43 (23) 46.24% (41.07%) 86% (46%)
Curl 30 10 1 10% 3.33% 30 (28) 11 (8) 36.67% (28.57%) 36.67% (26.67%) 18 (16) 10 (7) 55.56% (43.75%) 33.33% (23.33%) 17 (14) 9 (6) 52.94% (42.86%) 30% (20%)
Httpd 20 23 4 17.39% 20% 42 (39) 13 (10) 30.95% (25.64%) 65% (50%) 18 (15) 12 (9) 66.67% (60%) 60% (45%) 17 (9) 12 (5) 70.59% (55.56%) 60% (25%)

Total 100 141 18 12.77% 18% 239 (246) 72 (65) 30.13% (26.42%) 72% (65%) 153 (129) 66 (47) 43.14% (36.43%) 66% (47%) 127 (79) 64 (34) 50.39% (43.04%) 64% (34%)

improve accuracy. Moreover, the result of detection only with
specifications from documents is that there are 56 reports in
total and 36 bugs in the benchmark are detected. Therefore,
there are 30 bugs that can be only detected by code-based spec-
ifications. Apart from mitigating false negatives, the combined
specification also suppresses many false positives because it
can better avoid reporting valid cases, such as many failed
invocations that do not require subsequent operations. When
λ is 0.5 and after enabling document analysis, the total number
of reports is even reduced with more true bugs reported.

Meanwhile, we can see that the higher the threshold λ,
the higher the precision and the more significant the role
of document analysis. Notably, when λ is 0.8, the precision
is the highest, and 30 bugs can only be detected by the
specification obtained from documents. That is, the stricter
the specifications we get from code, the more precise the
specifications are, but the more likely many valid specifications
from code with relatively low frequency will be lost. With
the sigmoid threshold, we make the capability of detection
with code-based specifications reach a good trade-off between
precision and recall. Because macro functions are expanded
into ordinary instructions in the bitcode, and callback functions
are not precisely identified under the current analysis, now
APICAD is not sensitive to 17 bugs in this benchmark, such
as the macro va start() in httpd, and the callback functions
for memory management in libcurl. Besides, there are 17
additional bugs left out by APICAD and 6 of these bugs can
be detected when the threshold λ is 0.5. In Section IV, we will
discuss why APICAD brings false positives and negatives.

Note that ARBITRAR also has its evaluation on this bench-
mark. However, it only selects part of the bugs (47 of 100) and
does not make its choice available. Because there are multiple
subjective factors from users to influence ARBITRAR’s effec-
tiveness, we did not make a direct comparison with it. In fact,
the features extracted by APICAD can be compatible with
the active learning detection module of ARBITRAR in theory.
Without considering the subjective factors, some analysis
strategies of APICAD are also beneficial to ARBITRAR. For
example, APICAD can cover the feasible path as we discussed
in Section III-F1 but ARBITRAR fails, because it unrolls the

loop once but ignores to handle variables related to the loop
which can influence the path constraint.

D. Impact

After getting raw bug reports with usage feature, misuse
type and location from APICAD, we manually validate true
reports and provide corresponding materials to maintainers. In
total, we report 153 new API misuse bugs for chosen programs
with the help of APICAD. Table VI lists the bugs we report.
Note that many detected bugs are not listed because they had
been patched when we found them. Until now, the maintainers
confirmed 145 of our reported bugs, and our patches have
been applied to 126 of these bugs. In particular, the reported
bugs of Httpd are patched by other developers who respond
to our reports in Httpd’s Bugzilla. Based on our analysis, all
of these bugs have a non-ignorable impact, and some of them
have security implications that can cause memory crashes or
memory leaks. In addition, the lack of checking for return
value is the most common type in the reported bugs.

TABLE VI
IMPACT ON FINDING NEW REAL-WORLD BUGS. THE NUMBER OF PATCHED

REFERS TO HOW MANY OF OUR PROVIDED PATCHES ARE APPLIED.

Programs Reported Confirmed Patched Missed by APISAN

Curl 15 15 15 14
Httpd 9 9 0 5

OpenSSL 61 61 61 45
Linux kernel 68 60 50 -

Total 153 145 126 64

To further show the detection capability of APICAD, we
manually validated the results of APISAN in the same manner
as the validation for APICAD based on the confirmed bugs.
APISAN builds on Clang 3.6, but compiling Linux 5.15
needs the version of Clang ≥ 10.0.1. Therefore, we only
tested APISAN on Curl, Httpd, and OpenSSL. As listed in
Table VI, APISAN fails to reveal 64 of 85 confirmed bugs.
There are two main aspects to explain this phenomenon. First,
the context analysis of APISAN has limitations in handling
complex semantics of different usage as discussed in previous
works [8], [18] and APICAD mitigates them. Moreover, many
real-world API misuse bugs cannot be detected by APISAN
because of the codebase problem. On the one hand, APISAN

directly sets the threshold to 0.8, which can lose many valid
specifications with relatively low frequency, while APICAD
adjusts the threshold adaptively by considering the size of a
codebase. On the other hand, many bugs can never be detected
by the specification mined from code based on frequency
but can be filtered by the specification constructed from
documents. By contrast, APICAD gives play to the role of
two sources instead of taking a single source.

E. Performance

1) Code analysis: To demonstrate APICAD is efficient and
scalable to analyze regular real-world programs, we make
APICAD generate encoded contexts for the whole project of
Curl, Httpd, and OpenSSL. This process is a one-time task in
the workflow of APICAD. All the raw traces are also stored,
which can be leveraged in the follow-up analysis. For example,
we can recover the path corresponding to a raw trace in source
code and visualize it to help users validate our reports.

TABLE VII
ENCODED CONTEXT BUILDING FOR THREE PROGRAMS.

Programs Num of APIs Time Explored paths Encoded contexts

Curl 1,429 1h32m5.609s 1,581,679 127,029 (8.03%)
Httpd 3,311 1h45m10.820s 3,889,204 460,590 (11.84%)

OpenSSL 8.842 4h6m26.661s 5,550,546 1,007,124 (18.14%)

Total 13,582 7h23m43.090s 11,021,429 1,594,743 (14.47%)

In Table VII, we can see that APICAD totally explores
11,021,429 paths and a few explored paths (14.47%) can sat-
isfy path constraints. As a result, 1,594,743 encoded contexts
are finally generated for 13,582 API functions of these three
programs in about 7h, i.e., ∼16.7 milliseconds to generate one
encoded context. Take a heavily used API CRYPTO malloc
which occurs 455 times in OpenSSL as a concrete example,
APICAD takes 2m30.926s to generate 7,055 encoded contexts
for it, while ARBITRAR takes 3m12.055s (1.3x compared to
APICAD) but only generates 5,970 valid contexts for it.

Similarly, analyzing a common API in Linux kernel also
finishes within several minutes. For example, APICAD takes
11 minutes to analyze a widely used API kzalloc() with 29,133
contexts generated. Though it is feasible to analyze the whole
Linux kernel with enough resources, we suggest that end-users
select APIs by considering statistics [38] such as the number of
occurrences or sensitive words in the name, and then analyze
filtered APIs with APICAD. Otherwise, it can consume a lot of
unnecessary time and resources on many inessential functions
because Linux kernel is indeed a behemoth.

2) Document analysis: Document analysis does not take
much time in this work since we do not need to label data or
train models. The documents in our evaluation are collected
from the website within seconds, while it takes about 215
seconds to preprocess them into parts corresponding to each
API. After preprocessing, there are 6,170 functions to be
analyzed in total, and we spend 728 seconds filtering the
sentences and extracting semantics from them. Finally, the
specifications for 2,824 functions are constructed.

To measure the precision and recall of the constructed
specifications from documents, the ground truth is required.

Because manual examination of all documents is practically
impossible, we randomly sampled 600 functions (around 10%
of documented functions) as the ground truth to inspect our
obtained results. According to our manual retrieval, 329 of
the sampled 600 functions have the usage directive sentences,
which can construct 295, 19, and 54 specifications for return,
arguments, and causality, respectively. Overall, APICAD gen-
erates 239, 13, and 36 specifications for return, arguments,
and causality of 264 APIs. Out of these specifications, 216,
11, and 34 turn out to be real, giving rise to a precision of
90.6%. Considering 107 false negatives, we get a recall of
70.9%. These results show that our method is acceptable in
extracting the usage semantics from documents.

F. Case study

In this section, we take one case to show the path ex-
ploration capability of APICAD and another two cases to
further demonstrate the core insight of APICAD is reasonable,
i.e., the specifications from code and documents can be
complementary. All of these are from APIMU4C Project-Case
benchmark, and APICAD can successfully detect them.

Case study 1

static int ssl3_generate_key_block(SSL *s, unsigned char *km, int num)
1 unsigned char buf[16];
2 k = 0;
3 m5 = EVP_MD_CTX_new();
4 s1 = EVP_MD_CTX_new();

……
5 for (i = 0; (int)i < num; i += MD5_DIGEST_LENGTH) {
6 k++;
7 if (k > sizeof(buf)) {
8 return 0; // goto err;
9 }

……
10 }

……
11 err:
12 EVP_MD_CTX_free(m5);
13 EVP_MD_CTX_free(s1);

Fig. 5. A simplified code snippet in the Project-Case benchmark.

1) Valid path exploration: As shown in Figure 5, memory
is allocated for m5 and s1 before entering the loop, but the
memory is not properly released when the caller returns at line
8. To detect this bug, we need to reach line 8 and report that
there is no EVP MD CTX free() after EVP MD CTX new()
on the path. When entering the loop, k is known to be 0.
Typically, it needs more than 16 cycles to meet the condition
at line 7. However, the previous works [16], [18] only unroll
the loop once and ignore the impact of loop variables. For
such cases, though we still unroll the loop once, we replace
the result of the binary operations related to loop variables
with a new symbol, i.e., k becomes a symbolic value instead
of a const, so the path condition at line 7 can be satisfied.

2) Bug detected by the specification from code: In
OpenSSL of APIMU4C, there are three bugs related to
lacking a check for the return value of PACKET buf init().
APICAD detects these three bugs based on the specification
mined from code since PACKET buf init() does not have its
document. Specifically, APICAD generates 1,174 traces for
PACKET buf init() in total and the proportion of ret.checked
= true is 87.1%, which is above the threshold, so the

specification ret.need check is considered valid. It should
be noted that there are actually many problematic traces, but
they are merged during detection since they are in the same
location and have the same violation information. Finally, three
bugs about PACKET buf init() corresponding to the bugs in
APIMU4C are successfully reported by APICAD.

3) Bug detected by the specification from documents:
DH new() is a memory allocation function that allocates
and initializes a DH structure. In Httpd of APIMU4C,
DH new() is only used at one place in httpd/modules/ss-
l/ssl engine init.c, however, the location is missing a check for
its return value. On the one hand, ret.checked of all the traces
are false, so we cannot infer the correct usage of the return
checking for DH new() from code whatever the threshold λ is.
On the other hand, APICAD filters out the description about
the return of DH new(): “If the allocation fails, DH new()
returns NULL and sets an error code that can be obtained by
ERR get error(3). Otherwise it returns a pointer to the newly
allocated structure.”. By analyzing it, we acquire the return
specification: “ret”: {“value”: [0], “cond”: [“fail”]}. With this,
the above defect is finally detected by APICAD.

IV. DISCUSSION

In this section, we will discuss the limitations of our
approach and possible ways to mitigate them.

(1) Imprecise coverage of all feasible paths. On the one
hand, the slice depth controls the analysis scope for each API
invocation, and many indirect calls, such as callback functions,
are ignored to process, which can miss some pre- or post-
conditions. On the other hand, we use conservative pointer
analysis to identify usage-related functions and the path con-
ditions are under-constrained, which can bring false positives.
To precisely cover more feasible paths, some advanced points-
to analysis approaches [39]–[41] can help APICAD resolve
indirect calls and identify usage-related functions. In addition,
we consider enabling chopped symbolic execution [42] to
automatically exclude irrelevant functions by resolving their
side effects but not directly ignoring them.

(2) Inaccurate document analysis. On the one hand, we
choose keywords to filter the usage-related sentences. Though
this is simple and practical in the real world, it does sacrifice
some accuracy. On the other hand, the pre-trained model of
HanLP [35] has shown excellent results on multiple datasets.
However, it cannot eliminate inaccurate cases, especially with-
out appropriate tuning for specific corpus. Equipping with
advanced techniques and creating specific datasets is a feasible
way to improve the performance of different NLP models on
such jobs, and we will attempt to do further work on it.

(3) Restricted assumption. Though we utilize several meth-
ods to mitigate the demand for a large-scale and high-quality
codebase, we are still limited by the codebase, especially when
documents are absent. As discussed in previous works, there
are at least two ways to mitigate the false cases brought
by the restricted assumption: (a) Self iteration. Because all
the analyzed features are recorded, we can gradually reduce
the dependence on the size and quality of a codebase by

iterating over the past analyzed features. (b) Get feedback
from users. With user feedback [43]–[45], we can more easily
rank the cases and reduce false positives to save users’ effort
in validating the final reports. Besides, as the core insight of
recent works [18], [46], active learning can also be a feasible
way to utilize user feedback for detection.

V. RELATED WORK

In addition to works focusing on generic API misuse types,
there are many works only for specific applications or a
separate type of API misuse, such as cryptographic API mis-
use [2], [47], [48], web API misuse [49], [50], improper error
handling [51]–[55] and improper causal handling [56]–[58].
Regardless though, constructing API specifications or usage
violation rules is the cornerstone of API misuse detection.

The API specifications or usage violation rules can be manu-
ally acquired. For example, SSLint [2] takes predefined rules to
find API misuse specific to SSL/TLS, IMChecker [9] leverages
the rules written in Yaml [59] to define API specifications,
and Semmle [10] detects API misuse based on correct or
incorrect usage patterns written in CodeQL [60]. In addition,
encoding hard-coded rules into checkers of static tools like
ClangSA [12] is also a common way. Unlike such techniques,
APICAD can acquire three types of specifications without
much manual effort, but to make it more practical, we also
consider enabling users to provide assistance in the future.

To relieve manual efforts, many techniques explore mining
API specifications from code. As a typical work, APISAN [16]
regards various majority usage patterns as specifications. It is
generic without requiring manual efforts, however, it could
bring a high false positive rate and fails to handle complex
contexts [8], [18]. There are other techniques for automatically
generating specifications from code, such as Nar-miner [61],
JUXTA [62], JIGSAW [63], APIMiner [64] and PRMiner [65],
which also require a large corpus. Though APICAD still
follows the assumption that the majority usage is correct
when generating code-based specifications, it can mitigate the
negative impact of this assumption if the specifications from
documents are available, as demonstrated in Section III-C.
Besides, to improve the quality of code-based specifications
in practice, we optimize the capability of path exploration for
better utilizing the codebase and adjust the determination of
“majority” according to the size of the codebase.

With the development of NLP, many works attempt to
extract specifications from the texts in human language. For
instance, Jdoctor [66] extracts executable procedure specifica-
tions from comments to help generate test cases. ICON [21]
identifies the formal temporal constraints from documents to
infer API causal relationships. Similarly, we specify to analyze
the three types of usage in documents with the help of PoS
tagging and dependency parsing. To retrieve the usage-related
descriptions, iComment [67] uses the keywords such as “must”
or “need”, and some works [20], [68] enable the approaches of
regex or shallow parsing templates. Moreover, Advance [19]
trains a bidirectional GRU model with attention for classifi-
cation by labeling multiple sentences, which achieves better

accuracy. In this work, we filter sentences via the keyword-
based method. Although this results in an acceptable precision,
it can also bring many false negatives [19]. When there is
enough labeled training data, we can also leverage advanced
techniques such as Advance to improve APICAD.

Besides, since API misuse bugs usually have security im-
plications, Catcher [69] aims to generate test cases that result
in crashes through search-based testing and static exception
propagation analysis. In addition, given the location of an API
misuse bug, some techniques, such as directed fuzzing [70]
and fuzz driver generation [71], [72], can help produce specific
test cases to further verify its security impact.

VI. CONCLUSION

In this paper, we presented APICAD, which analyzes code
and documents to construct more comprehensive specifications
for finding API misuse bugs in C/C++ programs. We eval-
uated the prototype of APICAD on a bug benchmark and
several widely-used real-world programs. The results show
that APICAD is effective in capturing diverse contexts for API
invocations to deal with different types of API misuse bugs. In
the future, we believe the combined specification will play a
more significant role after applying more advanced techniques
to code and document analysis.

ACKNOWLEDGMENTS

We appreciate the anonymous reviewers for their valuable
comments and suggestions to improve our paper. We also want
to express our gratitude to Ziyang Li for developing ARBI-
TRAR’s symbolic execution engine, because part of APICAD
is built on it. This work is partly supported by National Natural
Science Foundation of China under Grant No.62172305.

REFERENCES

[1] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: validating ssl
certificates in non-browser software,” in Proceedings of the 2012 ACM
conference on Computer and communications security, 2012, pp. 38–49.

[2] B. He, V. Rastogi, Y. Cao, Y. Chen, V. Venkatakrishnan, R. Yang, and
Z. Zhang, “Vetting ssl usage in applications with sslint,” in 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015, pp. 519–534.

[3] O. Legunsen, W. U. Hassan, X. Xu, G. Roşu, and D. Marinov, “How
good are the specs? a study of the bug-finding effectiveness of existing
java api specifications,” in 2016 31st IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE). IEEE, 2016, pp. 602–
613.

[4] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“You get where you’re looking for: The impact of information sources
on code security,” in 2016 IEEE Symposium on Security and Privacy
(SP), 2016, pp. 289–305.

[5] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim, “Are
code examples on an online q&a forum reliable?: a study of api misuse
on stack overflow,” in 2018 IEEE/ACM 40th International Conference
on Software Engineering (ICSE). IEEE, 2018, pp. 886–896.

[6] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “Jumping through hoops:
Why do java developers struggle with cryptography apis?” in Proceed-
ings of the 38th International Conference on Software Engineering,
2016, pp. 935–946.

[7] C. Treude and M. P. Robillard, “Augmenting api documentation with
insights from stack overflow,” in 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE). IEEE, 2016, pp. 392–
403.

[8] Z. Gu, J. Wu, J. Liu, M. Zhou, and M. Gu, “An empirical study on api-
misuse bugs in open-source c programs,” in 2019 IEEE 43rd Annual
Computer Software and Applications Conference (COMPSAC), vol. 1.
IEEE, 2019, pp. 11–20.

[9] Z. Gu, J. Wu, C. Li, M. Zhou, Y. Jiang, M. Gu, and J. Sun, “Vetting api
usages in c programs with imchecker,” in 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering: Companion Proceedings
(ICSE-Companion). IEEE, 2019, pp. 91–94.

[10] “Semmle - Code Analysis Platform for Securing Software,” 2021, https:
//semmle.com/.

[11] “Cppcheck - A tool for static C/C++ code analysis,” 2021, https://cppc
heck.sourceforge.io/.

[12] “Clang Static Analyzer,” 2021, https://clang-analyzer.llvm.org/.
[13] M. K. Ramanathan, A. Grama, and S. Jagannathan, “Path-sensitive infer-

ence of function precedence protocols,” in 29th International Conference
on Software Engineering (ICSE’07). IEEE, 2007, pp. 240–250.

[14] A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting object usage
anomalies,” in Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, 2007, pp. 35–44.

[15] A. Wasylkowski and A. Zeller, “Mining temporal specifications from
object usage,” Automated Software Engineering, vol. 18, no. 3, pp. 263–
292, 2011.

[16] I. Yun, C. Min, X. Si, Y. Jang, T. Kim, and M. Naik, “Apisan: Sanitizing
{API} usages through semantic cross-checking,” in 25th {USENIX}
Security Symposium ({USENIX} Security 16), 2016, pp. 363–378.

[17] A. Sven, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “Inves-
tigating next steps in static api-misuse detection,” in 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR).
IEEE, 2019, pp. 265–275.

[18] Z. Li, A. Machiry, B. Chen, M. Naik, K. Wang, and L. Song, “Arbitrar:
User-guided api misuse detection,” in 2021 IEEE Symposium on Security
and Privacy (SP), 2021, pp. 1400–1415.

[19] T. Lv, R. Li, Y. Yang, K. Chen, X. Liao, X. Wang, P. Hu, and L. Xing,
“Rtfm! automatic assumption discovery and verification derivation from
library document for api misuse detection,” in Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’20, 2020, p. 1837–1852.

[20] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and A. Paradkar,
“Inferring method specifications from natural language api descriptions,”
in 2012 34th international conference on software engineering (ICSE).
IEEE, 2012, pp. 815–825.

[21] R. Pandita, K. Taneja, L. Williams, and T. Tung, “Icon: Inferring
temporal constraints from natural language api descriptions,” in 2016
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2016, pp. 378–388.

[22] X. Ren, X. Ye, Z. Xing, X. Xia, X. Xu, L. Zhu, and J. Sun, “Api-misuse
detection driven by fine-grained api-constraint knowledge graph,” in
2020 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2020, pp. 461–472.

[23] X. Ren, J. Sun, Z. Xing, X. Xia, and J. Sun, “Demystify official api
usage directives with crowdsourced api misuse scenarios, erroneous
code examples and patches,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, 2020, pp. 925–936.

[24] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live api documenta-
tion,” in Proceedings of the 36th International Conference on Software
Engineering, 2014, pp. 643–652.

[25] M. A. Saied, H. Sahraoui, and B. Dufour, “An observational study
on api usage constraints and their documentation,” in 2015 IEEE
22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). IEEE, 2015, pp. 33–42.

[26] A. Head, C. Sadowski, E. Murphy-Hill, and A. Knight, “When not
to comment: questions and tradeoffs with api documentation for c++
projects,” in Proceedings of the 40th International Conference on
Software Engineering, 2018, pp. 643–653.

[27] “OpenSSL - Cryptography and SSL/TLS Toolkit,” 2021, https://www.
openssl.org/.

[28] “Functions in libcrypto without documentation,” 2021, https://github.c
om/openssl/openssl/blob/master/util/missingcrypto.txt.

[29] D. Engler and D. Dunbar, “Under-constrained execution: making auto-
matic code destruction easy and scalable,” in Proceedings of the 2007
international symposium on Software testing and analysis, 2007, pp.
1–4.

https://semmle.com/
https://semmle.com/
https://cppcheck.sourceforge.io/
https://cppcheck.sourceforge.io/
https://clang-analyzer.llvm.org/
https://www.openssl.org/
https://www.openssl.org/
https://github.com/openssl/openssl/blob/master/util/missingcrypto.txt
https://github.com/openssl/openssl/blob/master/util/missingcrypto.txt

[30] D. A. Ramos and D. Engler, “Under-constrained symbolic execution:
Correctness checking for real code,” in 24th {USENIX} Security Sym-
posium ({USENIX} Security 15), 2015, pp. 49–64.

[31] “GNU LIB C - Memory Protection,” 2021, https://www.gnu.org/softwa
re/libc/manual/html node/Memory-Protection.html.

[32] “curl - command line tool and library for transferring data with URLs,”
2021, https://curl.se/.

[33] “httpd - Apache HTTP server project,” 2021, https://httpd.apache.org/.
[34] “The Linux Kernel Archives,” 2021, https://www.kernel.org/.
[35] H. He and J. D. Choi, “The stem cell hypothesis: Dilemma behind multi-

task learning with transformer encoders,” in Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, Nov. 2021, pp. 5555–5577.

[36] “Juliet test suite,” 2021, https://samate.nist.gov/SRD/testsuite.php.
[37] “Static analysis benchmarks from toyota itc,” 2021, https://github.com

/regehr/itc-benchmarks.
[38] S. Kim, T. Zimmermann, K. Pan, E. James Jr et al., “Automatic iden-

tification of bug-introducing changes,” in 21st IEEE/ACM international
conference on automated software engineering (ASE’06). IEEE, 2006,
pp. 81–90.

[39] Y. Sui and J. Xue, “Svf: interprocedural static value-flow analysis in
llvm,” in Proceedings of the 25th international conference on compiler
construction, 2016, pp. 265–266.

[40] S. Ghavamnia, T. Palit, S. Mishra, and M. Polychronakis, “Temporal sys-
tem call specialization for attack surface reduction,” in 29th {USENIX}
Security Symposium ({USENIX} Security 20), 2020, pp. 1749–1766.

[41] D. Trabish, T. Kapus, N. Rinetzky, and C. Cadar, “Past-sensitive pointer
analysis for symbolic execution,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020, pp. 197–208.

[42] D. Trabish, A. Mattavelli, N. Rinetzky, and C. Cadar, “Chopped sym-
bolic execution,” in Proceedings of the 40th International Conference
on Software Engineering, 2018, pp. 350–360.

[43] K. Heo, M. Raghothaman, X. Si, and M. Naik, “Continuously reasoning
about programs using differential bayesian inference,” in Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2019, pp. 561–575.

[44] R. Mangal, X. Zhang, A. V. Nori, and M. Naik, “A user-guided approach
to program analysis,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, 2015, pp. 462–473.

[45] M. Raghothaman, S. Kulkarni, K. Heo, and M. Naik, “User-guided
program reasoning using bayesian inference,” in Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2018, pp. 722–735.

[46] H. J. Kang and D. Lo, “Active learning of discriminative subgraph
patterns for api misuse detection,” IEEE Transactions on Software
Engineering, 2021.

[47] P. L. Gorski, L. L. Iacono, D. Wermke, C. Stransky, S. Möller, Y. Acar,
and S. Fahl, “Developers deserve security warnings, too: On the effect
of integrated security advice on cryptographic {API} misuse,” in Four-
teenth Symposium on Usable Privacy and Security ({SOUPS} 2018),
2018, pp. 265–281.

[48] I. Muslukhov, Y. Boshmaf, and K. Beznosov, “Source attribution of
cryptographic api misuse in android applications,” in Proceedings of the
2018 on Asia Conference on Computer and Communications Security,
2018, pp. 133–146.

[49] E. Wittern, A. T. Ying, Y. Zheng, J. Dolby, and J. A. Laredo, “Statically
checking web api requests in javascript,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE). IEEE, 2017,
pp. 244–254.

[50] S. Bae, H. Cho, I. Lim, and S. Ryu, “Safewapi: Web api misuse detector
for web applications,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2014,
pp. 507–517.

[51] M. Acharya and T. Xie, “Mining api error-handling specifications from
source code,” in International Conference on Fundamental Approaches
to Software Engineering. Springer, 2009, pp. 370–384.

[52] C. Li, M. Zhou, Z. Gu, M. Gu, and H. Zhang, “Ares: Inferring
error specifications through static analysis,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 1174–1177.

[53] Y. Kang, B. Ray, and S. Jana, “Apex: Automated inference of error spec-
ifications for c apis,” in Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, 2016, pp. 472–482.

[54] K. Lu, A. Pakki, and Q. Wu, “Detecting {Missing-Check} bugs via
semantic-and {Context-Aware} criticalness and constraints inferences,”
in 28th USENIX Security Symposium (USENIX Security 19), 2019, pp.
1769–1786.

[55] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck, “Chucky:
Exposing missing checks in source code for vulnerability discovery,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, 2013, pp. 499–510.

[56] P. Bian, B. Liang, J. Huang, W. Shi, X. Wang, and J. Zhang, “Sinkfinder:
harvesting hundreds of unknown interesting function pairs with just one
seed,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, pp. 1101–1113.

[57] N. Emamdoost, Q. Wu, K. Lu, and S. McCamant, “Detecting kernel
memory leaks in specialized modules with ownership reasoning,” in
The 2021 Annual Network and Distributed System Security Symposium
(NDSS’21), 2021.

[58] H.-Q. Liu, J.-J. Bai, Y.-P. Wang, Z. Bian, and S.-M. Hu, “Pairminer:
mining for paired functions in kernel extensions,” in 2015 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software
(ISPASS). IEEE, 2015, pp. 93–101.

[59] “YAML: YAML Ain’t Markup Language,” 2021, https://yaml.org/.
[60] P. Avgustinov, O. De Moor, M. P. Jones, and M. Schäfer, “Ql: Object-

oriented queries on relational data,” in 30th European Conference on
Object-Oriented Programming (ECOOP 2016). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2016.

[61] P. Bian, B. Liang, W. Shi, J. Huang, and Y. Cai, “Nar-miner: discovering
negative association rules from code for bug detection,” in Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2018, pp. 411–422.

[62] C. Min, S. Kashyap, B. Lee, C. Song, and T. Kim, “Cross-checking
semantic correctness: The case of finding file system bugs,” in Proceed-
ings of the 25th Symposium on Operating Systems Principles, 2015, pp.
361–377.

[63] H. Vijayakumar, X. Ge, M. Payer, and T. Jaeger, “{JIGSAW}: Protecting
resource access by inferring programmer expectations,” in 23rd USENIX
Security Symposium (USENIX Security 14), 2014, pp. 973–988.

[64] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining api patterns as partial
orders from source code: from usage scenarios to specifications,” in
Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, 2007, pp. 25–34.

[65] Z. Li and Y. Zhou, “Pr-miner: automatically extracting implicit pro-
gramming rules and detecting violations in large software code,” ACM
SIGSOFT Software Engineering Notes, vol. 30, no. 5, pp. 306–315,
2005.

[66] A. Blasi, A. Goffi, K. Kuznetsov, A. Gorla, M. D. Ernst, M. Pezzè,
and S. D. Castellanos, “Translating code comments to procedure spec-
ifications,” in Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2018, pp. 242–253.

[67] L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/* icomment: Bugs or bad
comments?*,” in Proceedings of twenty-first ACM SIGOPS symposium
on Operating systems principles, 2007, pp. 145–158.

[68] Y. Chen, L. Xing, Y. Qin, X. Liao, X. Wang, K. Chen, and W. Zou,
“Devils in the guidance: predicting logic vulnerabilities in payment
syndication services through automated documentation analysis,” in 28th
USENIX Security Symposium (USENIX Security 19), 2019, pp. 747–764.

[69] M. Kechagia, X. Devroey, A. Panichella, G. Gousios, and A. van
Deursen, “Effective and efficient api misuse detection via exception
propagation and search-based testing,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2019, pp. 192–203.

[70] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017, pp. 2329–2344.

[71] D. Babić, S. Bucur, Y. Chen, F. Ivančić, T. King, M. Kusano,
C. Lemieux, L. Szekeres, and W. Wang, “Fudge: fuzz driver generation
at scale,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 975–985.

[72] K. Ispoglou, D. Austin, V. Mohan, and M. Payer, “Fuzzgen: Automatic
fuzzer generation,” in 29th {USENIX} Security Symposium ({USENIX}
Security 20), 2020, pp. 2271–2287.

https://www.gnu.org/software/libc/manual/html_node/Memory-Protection.html
https://www.gnu.org/software/libc/manual/html_node/Memory-Protection.html
https://curl.se/
https://httpd.apache.org/
https://www.kernel.org/
https://samate.nist.gov/SRD/testsuite.php
https://github.com/regehr/itc-benchmarks
https://github.com/regehr/itc-benchmarks
https://yaml.org/

	Introduction
	Approach
	Encoded context building
	Identify the analysis scope for API invocations
	Build the context of API invocations
	Extracting usage semantics

	Frequency-based specification mining
	Specification construction from documents
	Bug detection with combined specification

	Evaluation
	Dataset
	Bug-benchmark
	Real-world programs
	Standard documents

	Functionality
	Effectiveness
	Impact
	Performance
	Code analysis
	Document analysis

	Case study
	Valid path exploration
	Bug detected by the specification from code
	Bug detected by the specification from documents

	Discussion
	Related Work
	Conclusion
	References

