
Input-Driven Dynamic Program Debloating for
Code-Reuse Attack Mitigation

Xiaoke Wang†
xkernel@whu.edu.cn
Wuhan University
Wuhan, China

Tao Hui†
taohui@whu.edu.cn
Wuhan University
Wuhan, China

Lei Zhao∗†
leizhao@whu.edu.cn
Wuhan University
Wuhan, China

Yueqiang Cheng
yueqiang.cheng@nio.io

NIO
Mountain View, USA

ABSTRACT

Modern software is bloated, especially for libraries. The unneces-
sary code not only brings severe vulnerabilities, but also assists
attackers to construct exploits. To mitigate the damage of bloated
libraries, researchers have proposed several debloating techniques
to remove or restrict the invocation of unused code in a library.
However, existing approaches either statically keep code for all
expected inputs, which leave unused code for each concrete input,
or rely on runtime context to dynamically determine the necessary
code, which could be manipulated by attackers.

In this paper, we propose Picup, a practical approach that dynam-
ically customizes libraries for each input. Based on the observation
that the behavior of a program mainly depends on the given input,
we design Picup to predict the necessary library functions immedi-
ately after we get the input, which erases the unused code before
attackers can affect the decision-making data. To achieve an effec-
tive prediction, we adopt a convolutional neural network (CNN)
with attention mechanism to extract key bytes from the input and
map them to library functions. We evaluate Picup on real-world
benchmarks and popular applications. The results show that we
can predict the necessary library functions with 97.56% accuracy,
and reduce the code size by 87.55% on average with low overheads.
These results indicate that Picup is a practical solution for secure
and effective library debloating.

CCS CONCEPTS

• Security and privacy→ Software security engineering.

KEYWORDS

software security, code debloating, attack mitigation
ACM Reference Format:

Xiaoke Wang, Tao Hui, Lei Zhao, and Yueqiang Cheng. 2023. Input-Driven
Dynamic Program Debloating for Code-Reuse Attack Mitigation. In Pro-
ceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’23),
December 3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3611643.3616274
∗Lei Zhao is the corresponding author.
†Full information of the affiliation: Key Laboratory of Aerospace Information Secu-
rity and Trusted Computing, Ministry of Education, School of Cyber Science and
Engineering, Wuhan University, Wuhan, China

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
the 31st ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE ’23), December 3–9, 2023, San Francisco,
CA, USA, https://doi.org/10.1145/3611643.3616274.

1 INTRODUCTION

Modern software is bloated, especially for libraries. For facilitating
software development, developers typically import many features
from libraries to synthesize new applications easily. However, such
one-size-fits-all strategy integrates excessive functionalities into the
code space of the program, where only a small set of functions are
needed. For example, a previous study [50] shows that only 10% of
the library functions are used in the Ubuntu Desktop environment.

Bloated libraries bring a detrimental impact on software security.
First, the extraneous code may involve vulnerabilities that enable
attackers to compromise the system. For example, the x32 ABI on
Linux is rarely used by real-world programs, but contains a severe
bug that grants attackers extra privileges [24]. Second, unnecessary
code provides fertile ground for code reuse attacks, such as return-
to-libc (ret2libc) [29] and return-oriented programming (ROP) [18,
19, 21, 54–56]. For example, the GNU C library (glibc) is linked to
almost all applications, but it contains many gadgets that attackers
can stitch to construct various malicious exploits [36, 37].

To mitigate the security damage of bloated libraries, researchers
have proposed several debloating techniques [13, 44, 47, 50, 70],
which remove or restrict the invocation of unused code. Based on
when the debloating takes effect, these techniques can be classified
into two categories: offline debloating and online debloating.

Offline debloating [13, 44, 50, 70] aims to trim libraries before an
application runs. For example, Piece-Wise analyzes call dependen-
cies during library compilation, and only enables necessary code
when an application is loaded [50]. Nibbler achieves a similar goal
for binaries [13]. To ensure the normal operations of an application,
they have to retain all functions that the application may invoke.
That is, all remaining code is loaded into the program code space
even if some of them are unused for a concrete execution on a spe-
cific input. However, a concrete execution on a given input often
traverses a small amount of all program paths and only invokes a
small set of the remaining functions. As a result, although offline
debloating techniques can remove many unnecessary codes, the
library is still bloated for a concrete execution.

On the other hand, online debloating removes unnecessary li-
brary functions at runtime, aiming to achieve on-demand loading.
For example, BlankIt [47] utilizes a decision-tree based predictor
with the function calling context to predict and selectively load
library functions at each call. Therefore, context-based debloating
can further reduce the attack surface. However, such per-context
debloating techniques are vulnerable to context-corruption attacks.
Specifically, BlankIt [47] relies on three factors to predict the
required functions: the call site location, the arguments, and the
reverse dominance frontier (RDF) of arguments, all of which can be
manipulated through memory corruptions (to modify arguments)

https://doi.org/10.1145/3611643.3616274
https://doi.org/10.1145/3611643.3616274

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Xiaoke Wang, Tao Hui, Lei Zhao, and Yueqiang Cheng

or slight control-flow manipulation (to choose a proper RDF and
call site). Therefore, attackers can fabricate the context for any
library function and thus revive ROP or ret2libc attacks.

In this paper, we propose Picup, an online debloating approach
that dynamically customizes libraries for each input. Picup aims
to balance code reduction and enforcement reliability. Our insight
is that the library demands by an application vary on different
inputs, while the user-supplied input is the original trampoline for
attackers. By predicting the library demands of the received input,
we can restrict the suspicious program behavior for the lifetime
of each input, which avoids only considering the entire lifetime
of a program and blocks the attacker from manipulations on the
debloating result. Thus, Picup not only reduces more code than
offline techniques but also mitigates the potential threats of online
techniques from being nullified by context-corruption attacks.

To achieve a practical per-input library debloating, Picup should
satisfy two design requirements: robustness and functionality.

Robustness means that the decision-making process and result
cannot be affected by attackers. To achieve this property, we hook
input-receiving system calls to capture the input before it reaches
the program. Picup predicts necessary library functions at such
locations so that attackers have no chance to affect the decision-
making. After prediction and debloating, Picup guarantees the same
code size until getting the next input or reaching the end. Even
if attackers manipulate program states at runtime, they cannot
increase the attack surface by invalidating debloating results.

For the functionality requirement, Picup is designed to predict
minimal-but-adequate library functions for supporting program
normal operations as well as reducing the attack surface to the min-
imum. Considering among any-length and diverse input bytes, only
a few of them contribute to determining the library demands, we
adopt a convolutional neural network (CNN) with attention mecha-
nism to identify sensitive bytes from the input with variable length
and map the extracted bytes to library functions. Since Picupworks
for per-input rather than all library API call sites with different
contexts, it does not frequently perform predictions during normal
internal operations. Besides, we only need to build one model for
the whole application, instead of many instrumented predictors for
each API function. Thus, this solution is efficient and portable to
handle most programs with any input format.

We implement a prototype of Picup, which first runs the pro-
gram with given inputs to collect mappings from inputs to used
library functions. Then, it applies CNN on the mapped data to con-
struct an input-based prediction model. At runtime, Picup hooks
each input-receiving system call and predicts the necessary library
functions for each input. To demonstrate the effectiveness of Picup,
we evaluate the prototype on the SPEC CPU 2006 benchmark and
several real-world applications. The experimental results show that
Picup can predict library functions with an average accuracy of
97.56%, and reduce the exposed code surface of libraries by 87.55%,
thereby mitigating the risk of ROP gadgets and vulnerable func-
tions. In addition, our protection only introduces 1.32% runtime
overhead to SPEC CPU 2006 benchmarks and has an acceptable
performance on real-world applications.

In summary, we make the following contributions:

• We propose per-input debloating, a practical approach that
dynamically reduces the library attack surface for each input.
Our method balances the code reduction and the enforce-
ment reliability to achieve better security.

• We design and implement a system that captures user input
and predicts library functions. To provide an accurate pre-
diction, we adopt the neural network method to model and
predict the library demand of each input.

• We evaluate Picup on SPEC CPU 2006 and popular applica-
tions. Results show that Picup can predict the library func-
tions with 97.56% accuracy, and reduce the code size by
87.55% on average with low overheads.

The source code of Picup is available at: https://github.com/
b1nsecWh/Picup.

2 MOTIVATION

2.1 Library Debloating

To illustrate existing debloating approaches and demonstrate their
differences and limitations, we borrow a code fragment from previ-
ous studies [32, 47], shown in Figure 1. The code snippet contains
two if conditional statements (𝑠3 and 𝑠9). Given different inputs,
this program will execute along with different paths. To be more
specific, if the input indicates an administrator, the program will ex-
ecute along with ⟨𝑠3, 𝑠6, 𝑠8, 𝑠9, 𝑠12⟩. Otherwise, if the input indicates
a normal user, the programwill execute along with ⟨𝑠3, 𝑠4, 𝑠8, 𝑠9, 𝑠10⟩.
Moreover, there is a classical stack-based buffer overflow vulner-
ability in 𝑠8, which could be exploited by attackers to change the
execution path. Specifically, an attacker can construct an illegal
input to overwrite str and user at 𝑠8, resulting in an unintended
attack at the if condition in 𝑠9. Once the attack occurs, a mali-
cious non-privileged user can perform any sensitive operations by
invoking the library function system with arbitrary arguments.

Offline debloating approaches [13, 50, 70] trim libraries while
supporting the program on all legitimate inputs. In this example, the
programwill execute alongwith two paths based on different inputs,
indicated as a red solid line and a black solid line in Figure 1 (b).
Therefore, offline debloating approaches prohibit invocations of any
library functions except the seven APIs used in the code segment.
However, a dynamic execution on a specific input only invokes
APIs along the red path or the black path. Therefore, the remaining
APIs are still bloated for a concrete execution. The bloated APIs
enlarge the attack surface, and can assist attackers to obtain extra
privileges, as demonstrated in the aforementioned attack.

Online debloating approaches aim to remove library functions
dynamically. A recent work, BlankIt [47], restricts API invocations
such that each library function can only be called at corresponding
call sites within certain contexts. To achieve this, BlankIt designs a
context-based model to predict necessary code and then embeds
it into every API call site. That is, based on the execution context,
BlankIt predicts and debloats code at each API call, to ensure that
only part of the library functions is available.

However, the context-based prediction mechanism itself has lim-
itations. Specifically, BlankIt needs to build the decision-tree based
model for all API functions, which is hardly scalable and can bring
an extremely high overhead when there are lots of API calls in
one execution. What is worse, such a prediction mechanism can

https://github.com/b1nsecWh/Picup
https://github.com/b1nsecWh/Picup

Input-Driven Dynamic Program Debloating for Code-Reuse Attack Mitigation ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

(b) Offline Approaches

Super user flow
Normal user flow Available

API

strncmp

memcpy

strcpy

fprintf system

strncmp

Super
user input

free

Normal
user input

(a) Code

s1 char str[SIZE], user[SIZE];
s2 ...
s3 if (strncmp (user, "admin", 5)) {
s4 free(...); // release data
s5 } else {
s6 memcpy(...); // cache data
s7 }
s8 strcpy (str, someinput); // vul point
s9 if (strncmp (user, "admin", 5)) {
s10 fprintf (..., str); // log for normal users
s11 } else {
s12 system(str); // sensitive op for admin
s13 }

(c) Online Approaches

Normal
user input

strncmp

memcpy

strcpy

fprintf system

strncmp
context

free

Debloat
point

Candidate
available API

(d) Our Approach

Block
the attack

Normal
user input

strncmp

memcpy

strcpy

fprintf system

strncmp

free

Control
flow hijack

Figure 1: Debloating an example code with different solutions. The example code in (a) has a stack-based buffer overflow

vulnerability at line 𝑠8, enabling various attacks. Offline debloating approaches in (b) allow all imported APIs, and therefore, the

system can be used for the attack; online approaches in (c), though they only activate one API at a time, may still allow system
to be used by attacks due to attacker-controllable contexts. Our approach in (d) only provides APIs along with the execution

path of one input, so even if the control flow is hijacked, the APIs on the execution path of other inputs are still not available.

fprintf

s8: ...

s4: ...
s3: ...

Process Memory

s6:
 call blankit_predict
 ...
 call memcpy

.text

fake old_ebp
fake ret_addr

fake
call context

%eip

strncmp

memcpy

strcpy

system

strncmp

context

free

%esp

%ebp
stack

s12: ...
...

Figure 2: Attack on BlankIt via faked context. An attacker

constructs fake calling contexts in the stack, which will mis-

lead the prediction model in BlankIt and then allow the at-

tacker to call any functions in section .text.

be bypassed by fabricating runtime context. First, because BlankIt
only predicts at each call site, it is insensitive to control flow hi-
jacking that occurs outside the call site. As shown in Figure 1 (c),
the approach is also vulnerable to the aforementioned attack to call
the system function. Moreover, as shown in Figure 2, the attacker
can construct the calling context for any function by overrunning
the stack frame. Through hijacking the return address, the attacker
can jump to the target site and mislead the decision tree model to
make a mistaken decision, and then copy unintended code back
(e.g. memcpy). With appropriate context-corruption, the attacker is
available to invoke any functions in the code section .text. Conse-
quently, despite the excellent code reduction rate, the context-based
approaches cannot always guarantee its enforcement.

In summary, offline debloating approaches still contain unneeded
features for each concrete execution. By contrast, online debloating
approaches ensure minimal library size at execution, but they are
vulnerable to corruption attacks because of the over-reliance on
context. In this case, we aim to balance code reduction and reliable
enforcement to achieve better security.

2.2 Per-Input Online Debloating

Given an execution path, only functions on the path are invoked so
that the other functions beyond the path are unnecessary. What’s
more, we observe that the execution path of a program mainly
depends on each received input. For the example in Figure 1, the
two execution paths are determined by inputs that indicate admin
users or not. If we can predict the APIs required on the coming
execution path based on the input, then the functions (e.g. memcpy
and system) will be blocked for normal users. Meanwhile, as attack-
ers cannot interrupt the results until sending the next input, the
aforementioned attack is not feasible anymore, even if attackers can
corrupt the stack variable user via current input, calling system
will not be allowed and finally trigger an execution exception, i.e.,
segmentation fault with invalid permission.

Following the above observation, we propose per-input debloat-
ing, which is to dynamically debloat unused code for each input. By
predicting the dynamic API demand just for a specific input at run-
time, and thus its code reduction rate is higher than existing offline
debloating approaches. In addition, per-input debloating can guar-
antee the enforcement reliability, because attackers cannot affect
the debloating results nor call unexpected APIs during the dynamic
execution, even if attackers can manipulate program context.

2.3 Threat Model

We assume that the underlying hardware and operating system are
trustworthy, and thus the prediction model and debloating opera-
tions with the necessary data can be protected. That is, the details

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Xiaoke Wang, Tao Hui, Lei Zhao, and Yueqiang Cheng

of the prediction model can maintain agnostic to users and cannot
be steered by them to influence the prediction. We do not restrict
the attacker’s knowledge of the memory layout. The attacker can
read/write data and code sections of a process, and the attacker
can hijack control flow by exploiting vulnerabilities such as buffer
overflow and use-after-free. Note that other memory protection
mechanisms, such as StackGuard [23], ASLR [59], DEP [58], and
CFI [12], do not conflict with our approach.

3 PICUP DESIGN AND IMPLEMENTATION

In general, Picupworks in two phases: the preparation and runtime
phase. In the preparation phase, we collect the program execution
traces on various inputs and then use them to train the prediction
model. Meanwhile, we obtain the dependencies between functions
to assist in identifying required functions in runtime. During the
runtime phase, we capture the program input and utilize the trained
model to predict the unnecessary library APIs. Finally, Picup en-
ables required library functions during the dynamic execution and
restricts the invocation to unused library functions.

librarylibrary

Dependency dynamic
debloating

API demand
prediction

library
code dependency

analysis

execution monitoring & input extraction

input

Process memory

1 0 1 0 ... 0 0 1 0
API list

mapping

application

dynamic execution on an input

Figure 3: The overview of Picup.

Figure 3 shows the overview of Picup, which consists of four
modules: execution monitoring and input extraction, input-driven
prediction, code dependency analysis, and dynamic library debloat-
ing. The first module, execution monitoring and input extraction,
aims to monitor the dynamic execution of programs and captures
the input before the program receives it, which enables Picup to
perform the subsequent prediction and library debloating.

Given a captured input, Picup will predict the library demand
on the execution path for it. To do so, we design a neural network
model to make predictions driven by inputs. As the demand of a
program on libraries is API functions, we make the output of the
prediction model as a list that indicates which APIs are needed.

Additionally, considering an invoked API function typically calls
other functions and such sub-functions are also required during
execution, we make a dependencies analysis to identify the sub-
functions for every exported function in the preparation phase.

After identifing the required library functions, Picupwill use the
component of dynamic debloating to remove unnecessary functions.
To achieve this, we restrict the permission to unnecessary functions
by assigning corresponding memory pages as non-executable.

In the following content of this section, the design details of the
above four modules will be presented.

3.1 Execution Monitoring and Input Extraction

To debloat library functions for each input, Picup needs to ob-
tain the input and mapping library addresses about the program
execution. Besides, Picup should be automatically triggered to per-
form operations such as model prediction and dynamic debloating.
Therefore, we monitor each execution of the program and focus on
extracting the received input.

There are several design requirements in execution monitor-
ing and input extraction. First, the execution monitoring should
introduce as little impact as possible on the normal running of
the program. Besides, the input extraction should be reliable and
generic for types of interfaces for receiving inputs. For example,
a program can receive inputs from the command line (e.g., stdin),
from the file system, and the network interface (e.g., socket). There-
fore, Picup requires a generic approach to identify types of inputs.
In addition, the input extraction should be reliable to ensure that
our protection cannot be bypassed even if attackers can manipulate
the state of the program. For example, when the attack shown in
Section 2.1 happens, we should ensure that attackers do not have
any chance to corrupt our protection mechanism.

get input

sys_execve

K
er

ne
l

A
pp

lic
at

io
n

start

sys_mmap

load library

pid lib addr input

sys_exit

exit

sys_recv argv
 envp sys_read

Figure 4: Execution monitoring and input extraction. By

hooking syscalls, Picup is awakened when the target pro-

gram starts execution and sleeps on exit. The address can be

obtained when the library is mapped into memory, and the

input can be captured before it reaches the program.

In this study, we design a lightweight and generic approach for
execution monitoring and input extraction by hooking syscalls. As
shown in Figure 4, Picup works at the kernel mode, thus the hook-
ing will not be directly affected by any operation from user space.
Meanwhile, this approach avoids introducing additional context
switching between user mode and kernel mode. To be more specific,
Picupmonitors the running state of dynamic execution by hooking
sys_execve, sys_exit. By hooking sys_execve, Picup is automatically
triggered to start working every time the target program starts
running. By hooking sys_exit, Picup is able to identify the exit of
the execution and releases resources in time.

Besides, Picup leverages sys_open(at) and sys_mmap to identify
libraries that are mapped to the process as well as their memory lay-
outs. Picup will use these memory layouts to debloat unnecessary
library functions via memory access control.

Input-Driven Dynamic Program Debloating for Code-Reuse Attack Mitigation ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

To capture program inputs via types of interfaces, Picup hooks
system calls related to I/O. In detail, Picup hooks sys_execve to ob-
tain the inputs (e.g. argv, envp) provided before the program runs.
During execution, Picup captures the inputs (e.g., stdin, file)
from character devices and block devices by hooking sys_read and
related system calls including sys_readv, sys_pread, sys_preadv. Sim-
ilarly, Picup captures the inputs from the network (e.g. socket) by
hooking sys_recv, sys_recvfrom, sys_recvmsg, sys_recvmmsg.

Hooking system calls is generic to identify received inputs.When-
ever a program receives an input, Picup captures the input and
further debloats library functions before the program processes it.
More importantly, we can ensure the robustness of Picup. As we
mentioned before, the hooking works at the kernel level so that
an attacker does not have any chance to modify the hooked input
even if the program in user mode is hijacked.

The module of execution monitoring and input extraction is
implemented by using a loadable kernel module with the help of
Kprobes [42], which enables us to dynamically break into any kernel
system call and collect debugging information non-disruptively.

3.2 Input-Driven Prediction

Picup trains the prediction model in the preparation phase. In the
runtime phase, our input-driven prediction model predicts required
library functions for the execution on a given input.

The main challenge in input-driven prediction is various inputs
make different contributions to predict program execution demand.
In general, there are both control bytes and data bytes in the input,
which are different for predicting program execution. Specifically,
the control bytes determine the program behaviors, which con-
tribute more to the prediction results, while the data bytes are
merely used to hold the input content. Moreover, the control bytes
in different inputs are specific to input formats, and thus vary a lot
from input to input. Without an in-depth understanding of input
formats, it is difficult to distinguish bytes for various inputs.

In recent years, artificial intelligence has been developing at a
rapid pace. The advances in deep learning provide us with a chance
to build a predictionmodel for program inputs. To address the above
challenge of extracting control bytes without a deep understanding
of the input format, we propose to leverage CNN for predicting
the library functions demand. The convolutional neural network
(CNN) [43, 45, 67] performs outstandingly in artificial intelligence
tasks such as image recognition, especially for feature extraction.
By leveraging CNN, our model can automatically learn control bytes
that determine program behaviors.

However, as demonstrated in previous techniques [51], control
bytes often represent a small fraction of all the bytes in program
input. With this impact, our CNN-based prediction model may
decrease the accuracy for inputs with large sizes. To improve the
performance of our prediction model, we further design to leverage
the attention mechanism [60, 63] as feature refinement to identify
the contribution of each byte extracted by CNN. In detail, the at-
tention layer works after the CNN extracted the feature bytes. It
generates a weight map to indicate the importance of each extracted
byte and then makes the bytes with high weights play an active
role in the model decision. In this way, we can enhance our model
by making it pay more attention to control bytes.

.

.

.

.

....

1
0
1
0
0

APIs

Fully Connected
Layer

MaxPoolingAttention
Layer

Convolutional
Layer

Binary
Stream
Inputs

Character
Stream
Inputs

Sigmoid

.

.

.

.
conv2

conv1
attention1

attention2

Figure 5: The prediction model in Picup. The features are

first extracted in the convolutional layer, and then refined in

the attention layer. In the fully connected layer, the model

predicts whether the API will be invoked or not.

To deal with various types of program inputs, we divide inputs
into two categories according to their forms. One is the binary
stream (e.g., images, ELF file), and the other is the character stream
(e.g., argv). The model applies different types of convolutional ker-
nels to extract control bytes in these two types of inputs. Specifically,
the binary stream inputs are processed by the kernel same to LeNet-
5 [43], and the character stream inputs are processed by the kernel
same to TextCNN [68] after each word is encoded into vector.

The last layer of the model contains neurons with the same
number as the APIs in Global Offset Table (GOT) of the target
program. The value of each neuron is normalized into a 0-1 range,
denoting the probability of requiring the corresponding API. After
processing with a threshold (0.5 by default), the model will output
an API list, where 1 means the API is required and 0 is not.

In the implementation, we build the prediction model based
on the torch framework [46] with Convolutional Block Attention
Module [63]. For binary stream input, we directly convert each byte
to a grayscale pixel. For character stream input, to encode all words
even if the word has not appeared before, we apply fastText [20] to
generate a distributed representation of each word.

3.3 Code Dependency Analysis for Libraries

As an API usually not only executes its own code, but also calls
other functions in the library, an API list is insufficient to identify all
required code for a certain execution. To address this problem, we
perform a code dependency analysis for libraries in the preparation
phase to record the functions each API depends on.

The technique we use is similar to control flow analysis [14, 15],
but focuses on inter-procedural control flow transfer. Specifically,
we search for all the call instructions of each function and iter-
atively analyze their destinations. As a result, all functions that
possibly be invoked by an API are regarded as dependencies. To
avoid duplicated analysis, we maintain a list of analyzed functions
with their dependencies. Note that this step is in the preparation
phase, so it does not bring extra overhead to the running phase.
Additionally, as the execution traces of inputs are also required to
be collected via tracing tools [31, 40] in the preparation phase, we

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Xiaoke Wang, Tao Hui, Lei Zhao, and Yueqiang Cheng

strncmp

memcpy

fprintf

system

strcpy

free

Prediction Result Process Memory

strncmp

strcpy
memcpy

fprintf

system

vfprintf

free

0

1
1
0
1

1

Non-Executable

Function Dependency

buffered_vfprintf ...

Figure 6: Library dynamic debloating. According to the pre-

diction result, all library code in the process memory is set

to non-executable except for these APIs that will be called

and their dependencies.

can also evaluate the addresses recorded by the traces to validate
and fix the dependencies in practice. Based on the dependencies
of each function, Picup is able to identify other necessary library
functions that will be invoked by the required API functions so that
ensuring the required APIs work properly in the runtime phase.

In our prototype, because the analyzed inter-procedural control
flow transfer based on binary code in practice is usually neither
sound nor complete, we implement the code dependency analysis
by leveraging both the symbolic analysis in angr [62] and the static
analysis in BARF [33] to enable the analysis as we demonstrated
above. To avoid missing valid dependencies by required code that
may influence normal functionality, we conservatively combine the
results of angr and BARF. That is, the final dependency includes all
relationships recorded by angr and BARF.

3.4 Dynamic Debloating

For dynamic debloating, we need to know the layout of libraries
mapped into the process memory, i.e., where are the libraries in
memory, so that we can further locate the required code. To do
this, as described in Section 3.1, Picup hooks sys_open(at) and
sys_mmap during execution. As sys_open(at) is used to open a
file and sys_mmap is used to map files into memory, hooking these
syscalls enables us to identify each loaded library and get the base
memory address of each library when the library is loading.

With the memory layout of libraries, Picup can identify the ad-
dress of each required library code in the process memory based on
the prediction result and the code dependencies for debloating. As
the operating system uses pages to manage process memory, Picup
chooses to change the executable permissions of the library code
by pages. Compared to directly modifying the content in memory,
this way introduces a relatively negligible load. Specifically, since
there is usually a small portion of the code required by a specific
input, Picup disables the executable permissions for all pages by
default so that we do not need to operate on too many pages each
time. Afterward, for each input and the corresponding prediction
result, the memory pages occupied by the required code will be
identified and set as executable before the process switches to user
space, i.e. before the program handles input.

It should be noted that the component of dynamic debloating
runs in kernel space, and works in cycle by determining the start,
exit and input of the execution, so we can strictly maintain the
permission during the execution of the process in user space un-
til the next input or exit. Meanwhile, Picup monitors the system
calls related to memory permission control, such as sys_mprotect,
sys_mmap. As a result, any call that tries to recover the debloated
code as executable via the memory permission control related sys-
tem calls from the user space will be treated as illegal. With this
setting, we can prevent the results of debloating from being affected
by users to ensure reliable enforcement. That is, the restricted code
cannot be invoked even if the calling context is manipulated.

Taking Figure 6 as an example, the APIs (strncmp, strcpy, free,
fprintf) that are predicted will be called and their dependent func-
tions (buffered_vfprintf, etc.) are retained as enabled. Except
for required functions, all other code (include system and memcpy)
is set to non-executable. If an attacker hijacks the control flow to
system by affecting the code branch, the relevant code in memory
is not executable. Instead, this will cause a fault that is caught by
Picup and then be handled with a specific security policy.

In the prototype of Picup, we implement the module of dynamic
debloating as a part of the loadable kernel module. With the kernel
module, Picup is automatically triggered to debloat library code
whenever the program gets an input.

4 EVALUATION

We implemented a prototype of Picup with 1,510 lines of C code
and 1,140 lines of python code on the platform of Ubuntu 18.04
LTS. To demonstrate the effectiveness of our approach, we conduct
comprehensive evaluations with four objectives.

• Code reduction. How much code can Picup reduce from
the libraries?

• Functionality guarantee. How accurate is our model? Can
the target program work properly under Picup?

• Security. How much can Picup improve the security of the
target program?

• Runtime overhead. How much is the runtime overhead
introduced by Picup?

4.1 Experiment Setup

Baseline Techniques. We select a state-of-the-art online debloat-
ing technique, BlankIt [47], as the baseline for comparison. Addi-
tionally, we also discuss the results of Piece-Wise [50], a represen-
tative offline debloating technique.

Datasets.We evaluate Picup on SPEC CPU 2006 [34] and several
real-world applications. SPEC CPU 2006 is employed for evaluation
in the previous study BlankIt [47]. To be more specific, we evaluate
Picup on the same 17 C/C++ applications selected by BlankIt.

Besides SPEC CPU 2006, to show that Picup can debloat real-
world applications with different running statuses by handling
various types of input interfaces, we employ multiple real-world
applications for evaluation. Specifically, the real-world applications
include two web-server applications (nginx [7] and lighttpd [41]),
two database applications (memcached [3] and redis [4]) for which
the input interface is the network, and three GNU Binutils pro-
grams [17] (readelf, objdump and nm) for which the input interface

Input-Driven Dynamic Program Debloating for Code-Reuse Attack Mitigation ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

is files and command lines. In terms of running status, these real-
world applications include both long-running and standalone pro-
cesses. All of the long-running applications are running under the
default configuration files and options. For web-server applications,
we deploy a copy of static HTML pages from Wikipedia[2] .

Test Cases. The SPEC CPU 2006 dataset includes three types of
test cases for every application, denoted as “test”, “train” and “ref”,
respectively. Following the configuration in BlankIt, we use the test
cases of both “test” (small) and “train” (medium) as training samples
to train the prediction model. Then, we use the test cases of “ref”
(large) to test the model. Please note that some applications in SPEC
CPU 2006 only consist of a small number of input cases, which may
lead to the over-fitting problem in the prediction model. To alleviate
the impact, we further leverage AFL [65], a representative coverage-
guided fuzzing tool, to randomly generate more input cases for
training. Specifically, we take the original input cases as initial
seeds for fuzzing, and then retrieve the newly generated seeds from
the working directory of fuzzing as part of the dataset since these
new seeds represent inputs that trigger different program states
and usually have diverse content.

For real-world applications, we collect the running logs from
the open deployment environment for the web-server and database
applications, and then extract inputs from the logs to construct
the set of test cases. For GNU Binutils applications, we randomly
collect both ELF and non-ELF files to construct the set of test cases.
Finally, we collect more than 10000 inputs for each application, and
then use ltrace [40] to record the APIs invoked by each input. These
datasets are partitioned for training, and testing with a ratio of 9:1,
which is a typical ratio in neural network jobs.

4.2 Code Reduction

To demonstrate the effectiveness of our approach in code surface
reduction, we leverage the code reduction rate as a metric and
the calculation is 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑐𝑜𝑑𝑒 =

∑
𝑛 (𝑟/𝑇)
𝑛 , where 𝑇 refers to the

number of total instructions in libraries, 𝑟 refers to the number of
instructions removed by debloating techniques, and 𝑛 refers to the
number of executions during testing.

To compare the performance of online and offline debloating
techniques, we further calculate the reduction rate of the imported
APIs. The calculation is 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐴𝑃𝐼 =

∑
𝑛 (𝑢/𝐼)
𝑛 , where 𝐼 refers to

the total number of imported APIs for the application; 𝑢 refers to
the number of import APIs that are removed in dynamic execution.

4.2.1 Code Reduction on SPEC CPU 2006. Table 1 shows the code
reduction rates on SPEC CPU 2006. Note that the data of BlankIt
is directly referenced from the literature [47].

Overall, Picup achieves 88.21% code reduction on average and
we can observe that the reduction rate of Picup is less than that
of BlankIt. The reason is that when calling an API, BlankIt only
remains the current API function and its sub-functions based on ex-
ecution contexts, while Picup remains all the API functions that are
predicted to be used by the currently received input. However, the
predictions made by BlankIt are overly dependent on the program
context, which can be easily forged by attackers. As discussed in
Section 2, an attacker can copy back any API code they want in the
section .text through context-corruption. Thus, despite achieving

Table 1: : Code reduction on SPEC CPU 2006.

Benchmark BlankIt Picup

401.bzip2 97.7% 89.12%
403.gcc 97.2% 83.57%
429.mcf 94.5% 85.83%
433.milc 98.0% 92.66%
444.namd 97.0% 90.54%
445.gobmk 95.7% 85.11%
450.soplex 97.4% 86.38%
453.povray 96.9% 87.31%
456.hmmer 97.9% 87.78%
458.sjeng 97.8% 86.65%
462.libquantum 97.9% 91.67%
464.h264ref 97.9% 88.93%
470.lbm 97.8% 92.44%
471.omnetpp 95.6% 88.46%
473.astar 96.6% 89.31%
482.sphinx3 97.6% 86.00%
483.xalancbmk 96.9% 87.85%

Average 97.08% 88.21%

Table 2: Code/API reduction on real-world applications.

Application Code API

nginx-1.14.0 90.31% 95.22%
lighttpd-1.4.59 86.68% 85.88%
redis-5.0.5 87.59% 94.78%
memcached-1.6.9 88.70% 90.82%
objdump-2.30 83.43% 84.81%
readelf-2.30 85.25% 72.26%
nm-2.30 79.65% 76.55%

Average 85.94% 85.76%

a high code reduction rate, the context-based online debloating
approaches cannot always guarantee its security enforcement.

In addition, based on our statistics, an average of 45.69% imported
API functions of SPEC CPU 2006 programs are invoked by different
inputs, which means that offline techniques like Piece-Wise [50]
need to retain an average of 54.31% unnecessary imported API
functions aswell as their dependencies. Note that we did not directly
make a fair comparison between Picup and Piece-Wise on the
17 SPEC CPU 2006 programs, because Piece-Wise customizes the
compiler and loader to generate ELF files and perform linking, but
its full implementation is not available. According to the original
experiments of Piece-Wise, it evaluates 11 of our selected 17 SPEC
CPU 2006 programs only with the compiled musl-libc (i.e., the other
libraries are retained without change). In such a situation, its code
reduction rate on musl-libc achieves 60% in worst-case and 86% in
best-case, both of which are lower than the average reduction rate
of Picup on all the shared libraries that a program depends on.

4.2.2 Code Reduction on Real-World Applications. Table 2 shows
the code reduction rate on the seven real-world applications. To
find out how many imported APIs of applications for Picup are
restricted in execution, we also count the reduction rate of the
imported API.

As shown in Table 2, the average code reduction rate is 85.94%
and the average imported API (the API in GOT) reduction rate is

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Xiaoke Wang, Tao Hui, Lei Zhao, and Yueqiang Cheng

85.76%. To investigate which code is reduced, we took a manual
analysis on nginx. Specifically, for the 90.31% code removal rate
of nginx, all code of several imported libraries (e.g. libz, libcrypto,
libcrypt, libssl) is even removed during execution based on our
manual analysis, because these libraries are not often used by nor-
mal HTTP requests. For the 95.22% API removal rate of nginx,
we also notice that some risk APIs (e.g. execve, syscall) that are
rarely invoked by general input are successfully disabled by Picup
in execution. In Section 4.4, we will further analyze how does the
reduced attack surface by our approach improves security.

In short, in addition to removing most code, our approach specif-
ically restricts many risk APIs according to the learning of realistic
situations by predictive models.

4.3 Functionality Guarantee

In this section, we evaluate whether Picup can guarantee the nor-
mal functionalities of executions on different inputs. If Picup ac-
curately retains the required functions, then the program can un-
doubtedly run normally. Therefore, we use the prediction accuracy
as a metric, which is defined as the percentage of APIs that are
correctly predicted and the calculation is 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

∑
𝐼𝑎
𝐼

, where
𝐼𝑎 refers to the API correctly predicted, and 𝐼 refers to the number
of imported APIs in a binary GOT.

Besides, there are two situations for inaccurate predictions: false
positive and false negative. A false positive refers to an API that is
useless but predicted to be required, and a false negative indicates
an API that is required but predicted to be useless. As false negative
can influence normal functionalities of the target program, we take
False Negative Rate (FNR) to further show the negative impact of
our prediction model on normal executions. FNR is calculated as
𝐹𝑁𝑅 =

∑
𝐼𝑓 𝑛
𝐼

, where 𝐼𝑓 𝑛 refers to the API with false negatives, and
𝐼 refers to the number of all invoked APIs during executions.

It should be noted in our evaluation, once the prediction does
not have false negatives, the program will work normally as the
obtained code dependency has been already revalidated and fixed
based on the pre-collected traces of the samples. However, it is hard
to perform complete and sound code dependency analysis on binary
in practice, especially for resolving indirect calls, and missing code
dependency may also influence normal functionality. If such cases
occur, we need to trace the execution of the input and confirm that
the control transfer is natural, then we can fix the code dependency
based on the trace to alleviate the negative impact. In this way, the
code dependency will continuously be more complete.

4.3.1 Accuracy and FNR on SPEC CPU 2006. Table 3 shows the
prediction accuracy and FNR for the 17 applications in SPEC CPU
2006. Note that Piece-Wise [50] has no accuracy data as it is an
offline approach without prediction. For BlankIt, we find that it is
hard to fairly reproduce its results due to its public implementation
and datasets are incomplete, so we directly present the accuracy
from the original paper [47]. While BlankIt does not report the FNR,
so its FNR is missing in Table 3.

From Table 3, we can observe that the accuracy of Picup (97.34%)
is higher than that of BlankIt (94.35%). In particular, Picup outper-
forms BlankIt in prediction for 12 out of the 17 applications, as
underlined in Table 3. Moreover, Picup also outperforms BlankIt

Table 3: Prediction accuracy and FNR on SPEC CPU 2006.

Benchmark

Accuracy

FNR

BlankIt Picup

401.bzip2 91% 100.00% 0.00%
403.gcc 99% 95.71% 1.07%
429.mcf 94% 94.44% 5.56%
433.milc 100% 91.98% 0.00%
444.namd 99% 100.00% 0.00%
445.gobmk 84% 93.08% 2.75%
450.soplex 92% 100.00% 0.00%
453.povray 97% 100.00% 0.00%
456.hmmer 98% 98.52% 0.00%
458.sjeng 97% 100.00% 0.00%
462.libquantum 60% 96.00% 0.00%
464.h264ref 100% 95.34% 0.00%
470.lbm 98% 94.44% 0.00%
471.omnetpp 99% 99.04% 0.00%
473.astar 100% 98.00% 0.00%
482.sphinx3 99% 100.00% 0.00%
483.xalancbmk 97% 98.35% 0.00%

Average 94.35% 97.34% 0.55%

Table 4: Accuracy and FNR on real-world applications.

Application Accuracy FNR

nginx-1.14.0 98.95% 0.59%
lighttpd-1.4.59 98.15% 0.98%
redis-5.0.5 96.28% 2.98%
memcached-1.6.9 96.08% 1.82%
objdump-2.30 99.36% 0.31%
readelf-2.30 99.11% 0.22%
nm-2.30 98.70% 0.78%

Average 98.09% 1.10%

even for the worst case. Picup provides 91.98% accuracy on 433.milc,
whereas BlankIt merely achieves 60% accuracy on 462.libquantum.

Meanwhile, we can also observe that Picup achieves 0.00% FNR
for all applications except three applications, 403.gcc, 429.mcf, and
445.gobmk. Specifically, the FNR for these applications are 1.07%,
5.56%, and 2.75%, respectively. Our manual analysis shows that
the test cases of 429.mcf are uninformative numbers with very
large size. Therefore, it is difficult for the model to extract accurate
features that determine program behaviors. The input of 403.gcc
contains some complex syntax information, which makes it diffi-
cult to predict. The input of 445.gobmk, a smart-game-format file,
consists of semantics-rich fields. It defines some special symbols
to represent specific program states. Such semantics-rich fields are
difficult to extract by our prediction model.

4.3.2 Accuracy and FNR on Real-World Applications. Table 4 shows
the accuracy and FNR on seven real-world applications.

From Table 4, we can observe that the average prediction accu-
racy of Picup is 98.09% and the FNR is 1.10% on seven real-world ap-
plications. Overall, these results indicate that our prediction model
can accurately predict the control bytes in inputs that determine
program behaviors. To find out what key bytes are extracted, we
also made a further analysis on the prediction process. Take nginx
as a brief example, we found that our model successfully iden-
tifies the word “gzip” contributes to the invocation for the API

Input-Driven Dynamic Program Debloating for Code-Reuse Attack Mitigation ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 5: Reduction of CVE vulnerability functions in Glibc on SPEC CPU 2006. ✓ means the vulnerability function is eliminated

by Picup, while ✗ means the function is not eliminated.

Glibc Vulnerability Benchmark

CVE-ID Glibc Vul. bzip gcc mcf milc namd gobmk soplex povray hmmer sjeng libquantum h264ref lbm omnetpp astar sphinx3 xalancbmk Total

2021-35942 ≤2.33 wordexp ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 17/17

2021-3326 ≤2.32 iconv ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 16/17

2020-27618 ≤2.32 iconv ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 16/17

2020-29562 2.30-2.32 iconv ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 16/17

2020-1752 2.14-2.32 glob ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 17/17

2009-5155 <2.28 parse
_reg_exp ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 17/17

2018-1000001 ≤2.26 realpath ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ 16/17

2018-11236 ≤2.27 realpath ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ 16/17

2018-11237 ≤2.27 mempcpy ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ 15/17

2018-6485 ≤2.26 posix
_memalign ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 0/17

Total 9/10 6/10 9/10 9/10 9/10 9/10 9/10 9/10 9/10 9/10 9/10 9/10 9/10 8/10 9/10 9/10 6/10 -

deflateInit2_ [1], and this API actually will be invoked if the
received input requests compression through gzip [30].

Furthermore, we can also find that the prediction accuracy of
two cached database applications is relatively lower than that of
other applications. Based on our manual analysis, we find that
some API calls depend on the environment of the program, such as
whether the query data exists in memory. However, it is difficult
for our model to obtain the environmental information from the
input alone. This reason leads to less accuracy of the model in these
applications. Conservatively predicting the required functions by
turning down the threshold for neuronal activation is a possible
way to mitigate the negative impact brought by false negatives on
the normal functionalities of the target program, but it may also
bring more false positives so that the code reduction rate will be
reduced. In fact, it is almost impossible to eliminate all inaccurate
predictions on diverse real-world programs even if considering
every potential factor. In Section 6, we present discussions on the
possible ways to handle false predictions.

4.4 Security

To find out how much our approach improves the security, we
evaluated Picup from the following three perspectives.

4.4.1 Reduction of ROP Gadgets. To show how much of the pro-
gram’s attack surface is reduced, we firstly count the ROP gadgets
that are removed after receiving each input. ROP gadgets are pieces
of code that can be run in a certain order to carry out attacks by
using return-oriented programming. The reduced gadgets will re-
strict an attacker’s capabilities in practice, so that the difficulty and
effort required for attacks will also increase even if there are still
other security risks in the remaining code.

To measure the reduction of ROP gadgets, we leverage angrop[9],
an ROP gadget finder and chain builder. For each program in the
SPEC CPU 2006, we recorded the code that is removed by Picup
under test case input and then calculated the removed gadgets
rate according to the proportion of removed gadgets in all gadgets
of each library. Table 6 shows the ROP gadgets reduction rate in
libraries on SPEC CPU 2006. In total, an average of 77.24% of ROP
gadgets were removed by Picup when the program is running.
Specifically, Picup removes an average of 70.51% ROP gadgets from
libc-2.27 and the reduction rate reaches 94.43% for libm-2.27.

Table 6: Reduction of ROP gadgets on SPEC CPU 2006.

Benchmark libc-

2.27.so

libm-

2.27.so

libgcc_s

.so.1

libstdc++

.so.6.0.25

Avg.

bzip2 78.12% - - - 78.12%
gcc 68.34% - - - 68.34%
mcf 72.39% - - - 72.39%
milc 78.15% 99.01% - - 88.58%
namd 71.00% 93.17% 76.20% 92.53% 83.22%
gobmk 72.33% 97.32% - - 84.83%
soplex 68.16% 93.76% 50.71% 60.73% 68.34%
povray 60.95% 90.09% 40.82% 91.95% 70.95%
hmmer 67.46% 87.16% - - 77.31%
sjeng 73.98% - - - 73.98%
libquantum 77.66% 94.77% - - 86.21%
h264ref 66.91% 96.95% - - 81.93%
lbm 75.78% 99.57% - - 87.67%
omnetpp 64.21% 97.17% 40.82% 68.46% 67.67%
astar 68.24% 93.76% 46.45% 92.53% 75.24%
sphinx3 67.67% 88.40% - - 78.03%
xalancbmk 67.32% 96.47% 46.45% 70.56% 70.20%

Avg. 70.51% 94.43% 50.24% 79.46% 77.24%

4.4.2 Reduction of Glibc Vulnerability. Another security benefit
of Picup is the reduction of vulnerable code in the library. That is,
the library code containing the vulnerability is removed by Picup
for specific input during one execution. It helps the program to
avoid related attacks. To demonstrate this ability, we collected a
total of 10 CVEs on glibc (GNU C Library) published in recent years.
We prepared vulnerable libraries linked by the SPEC CPU 2006
benchmark program, and checked whether vulnerable functions
were effectively removed by the debloating process.

Table 5 shows the evaluation result, including the 10 CVEs vul-
nerability functions on the 17 SPEC CPU 2006 benchmark pro-
grams. In 9 out of CVEs, the vulnerability functions were removed
with an effect of no less than 15/17. In particular, three [26–28]
of them were removed in all program runs. The worst result was
the posix_memalign function in CVE-2018-6485 [25], which was
retained by Picup for being a possible dependency for the program.
From the perspective of the programs, 14 of the 17 programs also
achieved a 90% reduction rate for the glibc vulnerability functions.

4.4.3 Case Study: Real-World Exploit Defense in Nginx. In order
to further study the effectiveness of Picup under real exploits, we

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Xiaoke Wang, Tao Hui, Lei Zhao, and Yueqiang Cheng

Evaluation

 Security

16

0.80

1.00

1.20

1.40

1.60

1.80

N
or

m
al

iz
ed

 R
un

ni
ng

Ti
m

e
Native
BlankIt
PICUP

Figure 7: Normalized running time on SPEC CPU 2006.

Table 7: Details about the exploits in nginx defended byPicup

No. Exploit Source Type Blocked Key API(s)

I exploit-db ret2system system
II github ret2shellcode mprotect
III BROP BROP strcmp,usleep,dup2,execve

(a) A normal input (b) An exploit input

Figure 8: A normal input and an exploit input. The difference

lies in the size and content of the chunk.

chose nginx [7], the most popular web server in the world [11], as
the object of discussion.

CVE-2013-2028 [10] is a high-risk stack overflow vulnerability in
the versions 1.39 to 1.40 of nginx. The remote attackers are allowed
to crash or attack nginx via a chunked Transfer-Encoding request
with a large chunk size, which triggers an integer signedness error
and a stack-based buffer overflow.

We gathered three exploits from exploit-db [6], github [8] and
BROP [5, 37] that can successfully attack nginx under CVE-2013-
2028. The exploit I from exploit-db calls the system API in libc
by reading the address in the GOT and adding an offset. The ex-
ploit II from github first makes the buffer executable by calling
the mprotect API through the ROP chain, and then executes the
shellcode written to the buffer. The exploit III from BROP is more
complex. Briefly, the attack steps include: ① find a stop gadget and
PLT; ② find the BROP gadget to control the first two arguments to
calls; ③ find strcmp in the PLT to control the first three arguments
to calls; ④ find write in the PLT to dump the entire binary to find
more gadgets; ⑤ build a shellcode and exploit the server. Table 7
shows the details of these exploits.

Although these exploits differ in their approaches, the requests
they send to nginx are actually similar in format (See Figure 8(b)).
More specifically, in order to ensure that the vulnerability is suc-
cessfully triggered, the header of these requests must be “Transfer-
Encoding chunked”, the same as the normal requests in Figure 8(a).
These exploit requests differ from normal requests only in the over-
sized chunk size and the constructed payload. Therefore, when
receiving these exploit requests, Picup will treat them as normal
requests and provide the same APIs as normal requests.

In general, all these attacks can be successfully defended by
Picup. In detail, exploit I fails since the system is not executable,
and exploit II fails to run the shellcode when mprotect does not
work. For exploit III, BROP fails in step ③ when trying to control
the first three arguments since strcmp cannot be executed. Besides,
at the last step it also cannot redirect the socket to standard input
and output because dup2 is disabled, cannot write payload because
usleep is disabled, and cannot execute the shell because execve
is disabled. Even if there are other ways to perform attacks, we
believe the restricted APIs will at least increase their difficulty.

4.5 Runtime Overhead

In this section, we evaluate the runtime overhead of Picup on SPEC
CPU 2006 and real-world applications. Besides, we also compare
the runtime overhead of Picup with that of BlankIt [47].

4.5.1 Runtime Overhead on SPEC CPU 2006. First, we measure the
running time of each benchmark in SPEC under Picup and compare
it with the original running time. All the applications are tested
three times, and the average normalized running time is shown
in Figure 7. Please note that the data in Figure 7 about BlankIt is
directly cited from the literature [47].

From Figure 7, we can draw several observations. First, our ap-
proach introduces less than 0.5% runtime overhead for 11 out of
the 17 applications. In particular, the runtime overhead is only
increased by 0.08% and 0.04% for 458.sjeng and 471.omnetpp, re-
spectively. Second, Picup introduces lower overhead than BlankIt
for 14 out of all the 17 applications. The overhead of our approach
is only 1.32%, whereas the overhead of BlankIt is 18%. Third, we
can observe that Picup outperforms BlankIt even for the worst
case. The worst overhead of Picup is 9.68% for 445.gobmk, while
the worst case of BlankIt is 76% for 403.gcc.

The main reason why Picup performs better than BlankIt is that
BlankIt debloats for every API call during execution while Picup
performs debloating only once when an execution receives an input.
For instance, an execution of 458.sjeng invokes API functions 24,766
times. With such a large number of API calls, BlankIt will perform
debloat 24,766 times too, and thus introduces 150% overhead. As a
comparison, Picup only introduce 0.08% overhead.

4.5.2 Runtime Overhead on Real-World Applications. Second, as
shown in Table 8, we measure the incremental time brought by
Picup and BlankIt on real-world applications by calculating the
processing time between two inputs and minus the raw time. Due
to the lack of partial code of BlankIt for training the prediction

Input-Driven Dynamic Program Debloating for Code-Reuse Attack Mitigation ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 8: Runtime overhead on real-world applications.

Application API Calls Rate Picup (ms) BlankIt (ms)

nginx 109.20 39.85 3.77
lighttpd 155.83 40.47 4.78
redis 200.05 17.52 3.04
memcached 1014.30 14.68 6.70
nm 27676.49 102.25 2294.07
readelf 84298.25 101.84 10482.16
objdump 1284344.10 101.32 117610.61

model, we skip the lightweight decision tree based predictions and
directly estimate the overhead of BlankIt by applying the simplified
rules as follows. First, when an API is called, we just copy the API
and all its sub-functions (i.e., dependencies) back. Second, we clear
all copied-back functions before another API is called.

Since Picup works on every input while BlankIt works on every
API call, the key overhead difference between them is related to
the ratio of input to API call, although the time spent by Picup
on each input and BlankIt on each call may vary. For revealing
the above factor, we measure the amount of API calls that the
program makes after each input, which we call as API Calls Rate. As
shown in Table 8, for low API Calls Rate programs, BlankIt performs
better than Picup, but Picup also has an acceptable results. With
the increasing of API Calls Rate, the overhead of BlankIt can be
extremely high. Taking objdump as an example, it calls the API on
average 1284344.10 times after each input and BlankIt generates
117610.61 ms of extra time, which is 1160x longer than Picup. By
contrast, the overhead of Picup does not depend on API Calls Rate
but can be influenced by the input itself, so Picup has a similar
overhead on the applications that receive the same type of input.

5 RELATEDWORK

Software debloating is a scheme to reduce the attack surface by
eliminating unused code. Among types of debloating techniques,
some of them aim to debloat the code in the program space rather
than libraries. Trimmer [57] identifies unnecessary functions by
user-defined configurations and then statically eliminates the code.
DamGate [22] is a framework for dynamic feature customization.
It uses static and dynamic analysis to rewrite binaries. Chisel [35]
employs a reinforcement learning approach based on user-provided
test cases to debloat software. Razor [48] uses binary rewriting to
produce the program that only supports necessary functionalities.
It does this by collecting the execution code of the software running
on a given input and then uses heuristics to infer the non-execution
code associated with the given input.

There are also several approaches in library debloating. Piece-
Wise [50] introduces a specialized compiler to accomplish program
debloating. It uses static analysis and training-based techniques to
compute function-level dependencies and then removes unneeded
functions at load time. Nibbler [13] performs similar library spe-
cialization at the binary level. It creates an application-level FCG
by extracting the function call graph (FCG) of the binary and all
imported libraries, and removes any untouchable code. In embed-
ded systems, Ziegler et al. [70] do this by both static analysis and
dynamic tracing, and a recent work 𝜇Trimmer [66] explores the
offline library debloating for binaries on MIPS architecture. These

offline library debloating techniques directly remove unused code
from libraries and are robust during the dynamic execution. How-
ever, they retain code for all inputs and cannot remove more code
for each concrete execution.

The current online technique, BlankIt [47], is a context-sensitive
approach for debloating. It leverages a decision tree to predict sub-
functions that will be used by the calling API based on call site,
arguments and reverse dominance frontier of arguments, and then
provides only those sub-functions. Although BlankIt removes more
code, it is vulnerable if an attacker forges proper contexts.

There are also debloating techniques for specific applications.
Kasr [69] aims to remove unused code fromOS kernels. Several stud-
ies [52, 53] aim to slim down the containers. Other studies [38, 39,
61] aim to debloat Java programs, the Java Virtual Machine (JVM),
web applications [16], Bluetooth stack [64], and browsers [49].

6 DISCUSSION

Error Handling. The prediction model may make false predic-
tions, which can further result in exceptions that the required code
is prohibited by Picup. Therefore, it is significant to handle errors
and distinguish them from attacks. As in previous techniques [47],
Picup can employ similar error handling mechanisms, such as a
virtual machine with check pointing, memory forensics and mem-
ory safety check. For example, when an application runs fault due
to a page permission error, we move the entire process to a secure
monitored environment to continue running. If the process runs
without risk operations, it is assumed that a prediction error has
occurred and the corresponding page permissions will be restored.
Conversely, an attack is considered to have occurred.

Malicious Input. Attackers may construct adversarial samples
to maliciously misguide our prediction model and further invoke
unused code. We acknowledge that this situation cannot be thor-
oughly avoided, but we argue that there are potential approaches
that make such attacks difficult. First, we can employ some nega-
tive samples and label them as all-zero lists, which indicates that
no code in libraries is permitted, to train the prediction model for
robustness. Second, with the threat model of our approach, the
details of the prediction model are agnostic to users. That is, the
prediction model is a black box to attackers, which increases the
difficulty for attackers to implement attacks.

7 CONCLUSION

In this study, we aim to balance the code reduction and the en-
forcement reliability of debloating and propose Picup, a per-input
debloating approach that dynamically reduces the library attack
surface for each input. We evaluate Picup on real-world bench-
marks and popular applications. The experimental results show
that Picup is a practical solution for secure and effective library
debloating, which can predict the necessary library functions with
97.56% accuracy, and reduce the code size by 87.55% on average
with low overheads.

ACKNOWLEDGMENTS

We want to thank all anonymous reviewers for their valuable com-
ments and suggestions. This work is partly supported by National
Natural Science Foundation of China under Grant No.62172305.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Xiaoke Wang, Tao Hui, Lei Zhao, and Yueqiang Cheng

REFERENCES

[1] 2004. zlib 1.2.11 Manual. https://www.zlib.net/manual.html. Accessed July 09,
2021.

[2] 2007. Wikimedia Downloads. https://dumps.wikimedia.org/. Accessed Oct 10,
2021.

[3] 2009. Memcached. https://memcached.org/. Accessed July 08, 2021.
[4] 2010. Redis. https://redis.io/. Accessed July 08, 2021.
[5] 2013. Blind Return Oriented Programming (BROP). http://www.scs.stanford.edu/

brop/. Accessed Oct 10, 2021.
[6] 2013. Nginx 1.3.9 < 1.4.0 - Chuncked Encoding Stack Buffer Overflow (Metasploit).

https://www.exploit-db.com/exploits/25775. Accessed Oct 10, 2021.
[7] 2015. Nginx. https://nginx.org/. Accessed July 08, 2021.
[8] 2020. CVE-2013-2028 Exploit. https://github.com/m4drat/CVE-2013-2028-

Exploit. Accessed Oct 10, 2021.
[9] 2021. angrop. https://github.com/angr/angrop. Accessed Oct 10, 2021.
[10] 2021. CVE-2013-2028 Detail. https://nvd.nist.gov/vuln/detail/CVE-2013-2028.

Accessed Oct 10, 2021.
[11] 2021. September 2021 Web Server Survey. https://news.netcraft.com/archives/

category/web-server-survey/. Accessed Oct 10, 2021.
[12] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-Flow

Integrity. In Proceedings of the 12th ACM Conference on Computer and Communi-
cations Security (Alexandria, VA, USA) (CCS ’05). Association for Computing Ma-
chinery, New York, NY, USA, 340–353. https://doi.org/10.1145/1102120.1102165

[13] Ioannis Agadakos, Di Jin, David Williams-King, Vasileios P. Kemerlis, and Geor-
gios Portokalidis. 2019. Nibbler: Debloating Binary Shared Libraries. In Pro-
ceedings of the 35th Annual Computer Security Applications Conference (San Juan,
Puerto Rico, USA) (ACSAC ’19). Association for Computing Machinery, New York,
NY, USA, 70–83. https://doi.org/10.1145/3359789.3359823

[14] Frances E. Allen. 1970. Control Flow Analysis. SIGPLAN Not. 5, 7 (July 1970).
[15] Frances E. Allen. 1970. Control Flow Analysis. In Proceedings of a Symposium on

Compiler Optimization (Urbana-Champaign, Illinois). Association for Computing
Machinery, New York, NY, USA, 1–19. https://doi.org/10.1145/800028.808479

[16] Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. 2019. Less is More:
Quantifying the Security Benefits of DebloatingWebApplications. In 28th USENIX
Security Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA,
1697–1714. https://www.usenix.org/conference/usenixsecurity19/presentation/
azad

[17] G BINUTILS. 2007. GNU Binutils. https://www.gnu.org/software/binutils/. Ac-
cessed July 08, 2021.

[18] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh.
2014. Hacking Blind. In 2014 IEEE Symposium on Security and Privacy. 227–242.
https://doi.org/10.1109/SP.2014.22

[19] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. 2011. Jump-
Oriented Programming: A New Class of Code-Reuse Attack. In Proceedings of
the 6th ACM Symposium on Information, Computer and Communications Security
(Hong Kong, China) (ASIACCS ’11). Association for Computing Machinery, New
York, NY, USA, 30–40. https://doi.org/10.1145/1966913.1966919

[20] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.
2017. Enriching Word Vectors with Subword Information. Transac-
tions of the Association for Computational Linguistics 5 (06 2017), 135–146.
https://doi.org/10.1162/tacl_a_00051 arXiv:https://direct.mit.edu/tacl/article-
pdf/doi/10.1162/tacl_a_00051/1567442/tacl_a_00051.pdf

[21] Erik Bosman and Herbert Bos. 2014. Framing Signals - A Return to Portable
Shellcode. In 2014 IEEE Symposium on Security and Privacy. 243–258. https:
//doi.org/10.1109/SP.2014.23

[22] Yurong Chen, Tian Lan, and Guru Venkataramani. 2017. DamGate: Dynamic
Adaptive Multi-Feature Gating in Program Binaries. In Proceedings of the 2017
Workshop on Forming an Ecosystem Around Software Transformation (Dallas,
Texas, USA) (FEAST ’17). Association for Computing Machinery, New York, NY,
USA, 23–29. https://doi.org/10.1145/3141235.3141243

[23] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. 1998. Stack-
guard: automatic adaptive detection and prevention of buffer-overflow attacks..
In USENIX security symposium, Vol. 98. San Antonio, TX, 63–78.

[24] CVE. 2013. Privilege Escalation Vulnerability in Linux x32 Configuration. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0038. Visited on July 07,
2021.

[25] CVE. 2018. CVE-2018-6485. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2018-6485. Visited on Oct 10, 2021.

[26] CVE. 2019. CVE-2009-5155. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2009-5155. Visited on Oct 10, 2021.

[27] CVE. 2019. CVE-2020-1752. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2020-1752. Visited on Oct 10, 2021.

[28] CVE. 2021. CVE-2021-35942. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-35942. Visited on Oct 10, 2021.

[29] Solar Designer. 1997. Getting around non-executable stack (and fix).
http://ouah.bsdjeunz.org/solarretlibc.html (1997).

[30] Peter Deutsch et al. 1996. GZIP file format specification version 4.3. (1996).
[31] Srikar Dronamraju. 2021. Uprobe-tracer: Uprobe-based Event Tracing. https:

//docs.kernel.org/trace/uprobetracer.html.
[32] H.H. Feng, J.T. Giffin, Yong Huang, S. Jha, Wenke Lee, and B.P. Miller. 2004. For-

malizing sensitivity in static analysis for intrusion detection. In IEEE Symposium
on Security and Privacy, 2004. Proceedings. 2004. 194–208. https://doi.org/10.1109/
SECPRI.2004.1301324

[33] Christian Heitman and Iván Arce. 2014. BARF: a multiplatform open source
binary analysis and reverse engineering framework. In XX Congreso Argentino
de Ciencias de la Computación (Buenos Aires, 2014).

[34] John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News 34, 4 (2006), 1–17.

[35] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective
Program Debloating via Reinforcement Learning. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security (Toronto, Canada)
(CCS ’18). Association for Computing Machinery, New York, NY, USA, 380–394.
https://doi.org/10.1145/3243734.3243838

[36] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang. 2016. Data-
Oriented Programming: On the Expressiveness of Non-control Data Attacks. In
2016 IEEE Symposium on Security and Privacy (SP). 969–986. https://doi.org/10.
1109/SP.2016.62

[37] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer. 2018.
Block Oriented Programming: Automating Data-Only Attacks. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security
(Toronto, Canada) (CCS ’18). Association for Computing Machinery, New York,
NY, USA, 1868–1882. https://doi.org/10.1145/3243734.3243739

[38] Yufei Jiang, Dinghao Wu, and Peng Liu. 2016. JRed: Program Customization
and Bloatware Mitigation Based on Static Analysis. In 2016 IEEE 40th Annual
Computer Software and Applications Conference (COMPSAC), Vol. 1. 12–21. https:
//doi.org/10.1109/COMPSAC.2016.146

[39] Yufei Jiang, Can Zhang, DinghaoWu, and Peng Liu. 2016. Feature-Based Software
Customization: Preliminary Analysis, Formalization, and Methods. In 2016 IEEE
17th International Symposium on High Assurance Systems Engineering (HASE).
122–131. https://doi.org/10.1109/HASE.2016.27

[40] Cespedes Juan and Machata Petr. 2021. Ltrace man page. URL
https://man7.org/linux/man-pages/man1/ltrace.1.html 1 (2021).

[41] Jan Kneschke. 2003. Lighttpd. https://www.lighttpd.net/. Accessed July 08, 2021.
[42] R. Krishnakumar. 2005. Kernel Korner: Kprobes-a Kernel Debugger. Linux J.

2005, 133 (May 2005), 11.
[43] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning

applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–2324. https:
//doi.org/10.1109/5.726791

[44] Collin Mulliner and Matthias Neugschwandtner. 2015. Breaking payloads with
runtime code stripping and image freezing. Black Hat USA (2015).

[45] Keiron O’Shea and Ryan Nash. 2015. An introduction to convolutional neural
networks. arXiv preprint arXiv:1511.08458 (2015).

[46] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Cur-
ran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[47] Chris Porter, Girish Mururu, Prithayan Barua, and Santosh Pande. 2020. BlankIt
Library Debloating: Getting What You Want Instead of Cutting What You Don’t.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation (London, UK) (PLDI 2020). Association for Comput-
ing Machinery, New York, NY, USA, 164–180. https://doi.org/10.1145/3385412.
3386017

[48] Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho Chung, Taesoo Kim,
and Wenke Lee. 2019. RAZOR: A Framework for Post-deployment Software
Debloating. In 28 USENIX Security Symposium (USENIX Security 19). USENIX
Association, Santa Clara, CA, 1733–1750. https://www.usenix.org/conference/
usenixsecurity19/presentation/qian

[49] Chenxiong Qian, Hyungjoon Koo, ChangSeok Oh, Taesoo Kim, and Wenke Lee.
2020. Slimium: Debloating the Chromium Browser with Feature Subsetting. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security (Virtual Event, USA) (CCS ’20). Association for Computing Machinery,
New York, NY, USA, 461–476. https://doi.org/10.1145/3372297.3417866

[50] Anh Quach, Aravind Prakash, and Lok Yan. 2018. Debloating Software through
Piece-Wise Compilation and Loading. In 27th USENIX Security Symposium
(USENIX Security 18). USENIX Association, Baltimore, MD, 869–886. https:
//www.usenix.org/conference/usenixsecurity18/presentation/quach

[51] Mohit Rajpal, William Blum, and Rishabh Singh. 2017. Not all bytes are equal:
Neural byte sieve for fuzzing. arXiv preprint arXiv:1711.04596 (2017).

https://www.zlib.net/manual.html
https://dumps.wikimedia.org/
https://memcached.org/
https://redis.io/
http://www.scs.stanford.edu/brop/
http://www.scs.stanford.edu/brop/
https://www.exploit-db.com/exploits/25775
https://nginx.org/
https://github.com/m4drat/CVE-2013-2028-Exploit
https://github.com/m4drat/CVE-2013-2028-Exploit
https://github.com/angr/angrop
https://nvd.nist.gov/vuln/detail/CVE-2013-2028
https://news.netcraft.com/archives/category/web-server-survey/
https://news.netcraft.com/archives/category/web-server-survey/
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/3359789.3359823
https://doi.org/10.1145/800028.808479
https://www.usenix.org/conference/usenixsecurity19/presentation/azad
https://www.usenix.org/conference/usenixsecurity19/presentation/azad
https://www.gnu.org/software/binutils/
https://doi.org/10.1109/SP.2014.22
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1162/tacl_a_00051
https://arxiv.org/abs/https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00051/1567442/tacl_a_00051.pdf
https://arxiv.org/abs/https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00051/1567442/tacl_a_00051.pdf
https://doi.org/10.1109/SP.2014.23
https://doi.org/10.1109/SP.2014.23
https://doi.org/10.1145/3141235.3141243
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0038
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0038
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6485
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6485
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-5155
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-5155
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-1752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-1752
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-35942
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-35942
https://docs.kernel.org/trace/uprobetracer.html
https://docs.kernel.org/trace/uprobetracer.html
https://doi.org/10.1109/SECPRI.2004.1301324
https://doi.org/10.1109/SECPRI.2004.1301324
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1109/SP.2016.62
https://doi.org/10.1109/SP.2016.62
https://doi.org/10.1145/3243734.3243739
https://doi.org/10.1109/COMPSAC.2016.146
https://doi.org/10.1109/COMPSAC.2016.146
https://doi.org/10.1109/HASE.2016.27
https://www.lighttpd.net/
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/3385412.3386017
https://doi.org/10.1145/3385412.3386017
https://www.usenix.org/conference/usenixsecurity19/presentation/qian
https://www.usenix.org/conference/usenixsecurity19/presentation/qian
https://doi.org/10.1145/3372297.3417866
https://www.usenix.org/conference/usenixsecurity18/presentation/quach
https://www.usenix.org/conference/usenixsecurity18/presentation/quach

Input-Driven Dynamic Program Debloating for Code-Reuse Attack Mitigation ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

[52] Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli, Somesh Jha, and Patrick
McDaniel. 2017. Cimplifier: Automatically Debloating Containers. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering (Paderborn,
Germany) (ESEC/FSE 2017). Association for Computing Machinery, New York,
NY, USA, 476–486. https://doi.org/10.1145/3106237.3106271

[53] Vaibhav Rastogi, Chaitra Niddodi, Sibin Mohan, and Somesh Jha. 2017. New
Directions for Container Debloating. In Proceedings of the 2017 Workshop on
Forming an Ecosystem Around Software Transformation (Dallas, Texas, USA)
(FEAST ’17). Association for Computing Machinery, New York, NY, USA, 51–56.
https://doi.org/10.1145/3141235.3141241

[54] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-
Oriented Programming: Systems, Languages, and Applications. ACM Trans.
Inf. Syst. Secur. 15, 1, Article 2 (March 2012), 34 pages. https://doi.org/10.1145/
2133375.2133377

[55] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza
Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-oriented Programming: On
the Difficulty of Preventing Code Reuse Attacks in C++ Applications. In 2015 IEEE
Symposium on Security and Privacy. 745–762. https://doi.org/10.1109/SP.2015.51

[56] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-
into-Libc without Function Calls (on the X86). In Proceedings of the 14th ACM
Conference on Computer and Communications Security (Alexandria, Virginia, USA)
(CCS ’07). Association for Computing Machinery, New York, NY, USA, 552–561.
https://doi.org/10.1145/1315245.1315313

[57] Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar. 2018.
TRIMMER: Application Specialization for Code Debloating. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering
(Montpellier, France) (ASE 2018). Association for Computing Machinery, New
York, NY, USA, 329–339. https://doi.org/10.1145/3238147.3238160

[58] Vincent Abella Starr Andersen. 2004. Changes to Functionality in Microsoft
Windows XP Service Pack 2, Part 3: Memory Protection Technologies, Data
Execution Prevention. http://technet.microsoft.com/en-us/library/bb457155.
aspx.

[59] PaX Team. 2003. Address Space Layout Randomization (ASLR). https://pax.
grsecurity.net/docs/aslr.txt.

[60] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762 (2017).

[61] Gregor Wagner, Andreas Gal, and Michael Franz. 2011. “Slimming” a Java virtual
machine by way of cold code removal and optimistic partial program loading.

Science of Computer Programming 76, 11 (2011), 1037–1053. https://doi.org/10.
1016/j.scico.2010.04.008 Special Issue on Principles and Practice of Programming
in Java (PPPJ 2008).

[62] F. Wang and Y. Shoshitaishvili. 2017. Angr - The Next Generation of Binary
Analysis. In 2017 IEEE Cybersecurity Development (SecDev). 8–9. https://doi.org/
10.1109/SecDev.2017.14

[63] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. 2018. CBAM:
Convolutional Block Attention Module. In Proceedings of the European Conference
on Computer Vision (ECCV).

[64] Jianliang Wu, Ruoyu Wu, Daniele Antonioli, Mathias Payer, Nils Ole Tippen-
hauer, Dongyan Xu, Dave (Jing) Tian, and Antonio Bianchi. 2021. LIGHTBLUE:
Automatic Profile-Aware Debloating of Bluetooth Stacks. In 30th USENIX Se-
curity Symposium (USENIX Security 21). USENIX Association, 339–356. https:
//www.usenix.org/conference/usenixsecurity21/presentation/wu-jianliang

[65] M. Zalewski. 2017. American fuzzy lop. http://lcamtuf.coredump.cx/afl/.
[66] Haotian Zhang, Mengfei Ren, Yu Lei, and Jiang Ming. 2022. One Size Does Not Fit

All: Security Hardening of MIPS Embedded Systems via Static Binary Debloating
for Shared Libraries. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems
(Lausanne, Switzerland) (ASPLOS ’22). Association for Computing Machinery,
New York, NY, USA, 255–270. https://doi.org/10.1145/3503222.3507768

[67] Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-Level Convolutional
Networks for Text Classification. In Proceedings of the 28 International Conference
on Neural Information Processing Systems - Volume 1 (Montreal, Canada) (NIPS’15).
MIT Press, Cambridge, MA, USA, 649–657.

[68] Ye Zhang and Byron Wallace. 2015. A sensitivity analysis of (and practitioners’
guide to) convolutional neural networks for sentence classification. arXiv preprint
arXiv:1510.03820 (2015).

[69] Zhi Zhang, Yueqiang Cheng, Surya Nepal, Dongxi Liu, Qingni Shen, and Fethi
Rabhi. 2018. KASR: A reliable and practical approach to attack surface reduction
of commodity OS kernels. In International Symposium on Research in Attacks,
Intrusions, and Defenses. Springer, 691–710. https://doi.org/10.1007/978-3-030-
00470-5_32

[70] Andreas Ziegler, Julian Geus, Bernhard Heinloth, Timo Hönig, and Daniel
Lohmann. 2019. Honey, I Shrunk the ELFs: Lightweight Binary Tailoring of
Shared Libraries. ACM Trans. Embed. Comput. Syst. 18, 5s, Article 102 (Oct. 2019),
23 pages. https://doi.org/10.1145/3358222

Received 2023-02-02; accepted 2023-07-27

https://doi.org/10.1145/3106237.3106271
https://doi.org/10.1145/3141235.3141241
https://doi.org/10.1145/2133375.2133377
https://doi.org/10.1145/2133375.2133377
https://doi.org/10.1109/SP.2015.51
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/3238147.3238160
http://technet.microsoft.com/en-us/library/bb457155.aspx
http://technet.microsoft.com/en-us/library/bb457155.aspx
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
https://doi.org/10.1016/j.scico.2010.04.008
https://doi.org/10.1016/j.scico.2010.04.008
https://doi.org/10.1109/SecDev.2017.14
https://doi.org/10.1109/SecDev.2017.14
https://www.usenix.org/conference/usenixsecurity21/presentation/wu-jianliang
https://www.usenix.org/conference/usenixsecurity21/presentation/wu-jianliang
http://lcamtuf.coredump.cx/afl/
https://doi.org/10.1145/3503222.3507768
https://doi.org/10.1007/978-3-030-00470-5_32
https://doi.org/10.1007/978-3-030-00470-5_32
https://doi.org/10.1145/3358222

	Abstract
	1 Introduction
	2 Motivation
	2.1 Library Debloating
	2.2 Per-Input Online Debloating
	2.3 Threat Model

	3 Picup Design and Implementation
	3.1 Execution Monitoring and Input Extraction
	3.2 Input-Driven Prediction
	3.3 Code Dependency Analysis for Libraries
	3.4 Dynamic Debloating

	4 Evaluation
	4.1 Experiment Setup
	4.2 Code Reduction
	4.3 Functionality Guarantee
	4.4 Security
	4.5 Runtime Overhead

	5 Related Work
	6 Discussion
	7 Conclusion
	References

